مروری بر نتایج آزمون های حرکات چشم در افراد مبتلا به دیابت

نوع مقاله: مقاله مروری

نویسندگان

1 مرکز تحقیقات عیوب انکساری چشم، دانشگاه علوم پزشکی مشهد، مشهد، ایران

2 کارشناس ارشد گروه اپتومتری، دانشکده علوم پیراپزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

3 استاد گروه اپتومتری، دانشکده علوم پیراپزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

4 استادیار گروه شنوایی شناسی، دانشکده علوم پیراپزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

دیابت یکی از رایج ترین اختلالات متابولیک و یکی از نگرانی های اصلی سلامت عمومی در جهان می باشد دیابت، عوارض زیادی در سیستم عصبی مرکزی ایجاد می کند که آسیب های عملکردی مهمی را نتیجه می دهد اختلالات کوچک نورولوژیک که در اثر دیابت ایجاد می شوند در معاینات نورولوژیکال روتین قابل تشخیص نیستند. آنالیز حرکات چشم یک راه مناسب تشخیص ضایعات مغزی است به خصوص بررسی رفلکس های ساکاد ( Saccade) برای شناسایی وجود پاتولوژی سیستم عصبی مرکزی مفید هستند. دیابت می تواند سبب اختلالاتی در حرکات چشم از جمله کاهش دقت و افزایش زمان تاخیر حرکات ساکاد و کاهش سرعت حرکات پرسویت (Pursuit) شود که این می تواند آسیب به سیستم عصبی مرکزی را در بیماران دیابتی نشان دهد همچنین عدم تقارن در حرکات ساکادیک چشم و حرکات اپتوکینتیک در افراد دیابتیک مشخص می کند که دیابت با آسیب به عملکرد پایه مغز و مخچه و سلول های گانگلیون بازال می تواند سبب اختلال حرکات چشم شود این تست ها در تشخیص زودهنگام عوارض دیابت در سیستم عصبی مرکزی این بیماران می توانند مفید باشند. این مقاله نتایج مقالات ارائه شده در پایگاه های داده Google Scholar، Web of science، PubMed از سال  1948 تا  2016 را مورد بررسی، ارزیابی و نقد قرار داده است. شواهد علمی معتبر با توجه به معیارهای ورود و خروج، جمع آوری، بررسی، بحث و نتیجه گیری شده اند. هدف از این مطالعه مروری بر مطالعاتی است که تست های ساکاد و حرکات چشم را در بیماران دیابتی بررسی کرده اند تا با خلاصه و جمع بندی نتایج آن ها بتوانیم به این سوال پاسخ دهیم که آیا اختلالات موجود در حرکات چشم می تواند با مشخصات کلینیکی دیابت ارتباط پیدا کند.

کلیدواژه‌ها

موضوعات


  1. Pourabbasi A, Tehrani-Doost M, Ebrahimi Qavam S, Larijani B. Evaluation of the correlation between type 1 diabetes and cognitive function in children and adolescents, and comparison of this correlation with structural changes in the central nervous system: a study protocol. BMJ Open 2016; 6(4): e007917.
  2. Bhardwaj S, Sandhu S, Sharma P, Kaur G. Impact of diabetes on CNS: role of signal transduction cascade. Brain Res Bull 1999; 49(3): 155-62.
  3. Katibeh M, Hosseini S, Soleimanizad R, Manaviat M, et al. Prevalence and risk factors of diabetes mellitus in a central district in Islamic Republic of Iran: a population-based study on adults aged 40-80 years. East Mediterr Health J 2015; 21(6): 412-9.
  4. Hess BJM. Vestibular Signals in Self-Orientation and Eye Movement Control. News Physiol Sci 2001; 16(5): 234-38.
  5. Khalilzadeh S, Afkhami-Ardekani M, Afrand M. High prevalence of type 2 diabetes and pre-diabetes in adult Zoroastrians in Yazd, Iran: a cross-sectional study. Electronic physician 2015; 7(1): 998-1004.
  6. Klagenberg KF, Zeigelboim BS, Jurkiewicz AL, Martins-Bassett J. Vestibulocochlear manifestations in patients with type I diabetes mellitus. Brazilian journal of otorhinolaryngology 2007; 73(3): 353-8.
  7. Darlington CL, Erasmus J, Nicholson M, King J, Smith PF. Comparison of visual±vestibular interaction in insulin-dependent and non-insulindependent diabetes mellitus. Neuroreport 2000; 11(3): 487-90.
  8. Wild S, Roglic G, Green A, Sicree R, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care 2004; 27(5): 1047-53.
  9. Greene D, Lattimer S, Sima A. Sorbitol, phosphoinositides,and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Meal 1987; 316(10): 599-606.
  10. Strowig S, Raskin P. Glycemic control and diabetic complications. Diabetes Care 1992; 15(9): 1126-40.
  11. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, et al. Cerebral function in diabetes mellitus. Diabetologia 1994; 37(7): 643-50.
  12. Brown M, Ashbury A. Diabetic neuropathy. Ann Neuro1 1984; 15(1): 2-12.
  13. Niakan E, Harati Y, Comstock J. Diabetic autonomic neuropathy. Metabolism 1986; 35(3): 224-34.
  14. Vinik A, Holland M, Le Beau J, Liuzzi F, et al. Diabetic neuropathies. Diabetes Care 1992; 15(12): 1926-75.
  15. Edwin A, Weinstein EA, Dolger H. External ocular muscle palseis occurring in diabetes mellitus Downloaded. Arch NeurPsych 1948;60(6):597-603.
  16. Selvarajah D, Tesfaye S. Central nervous system involvement in diabetes mellitus. Current Diabetes Reports 2006; 6(6): 431-8.
  17. Virtaniemi J, Laakso M, Nuutinen J, Karjalainen S, et al. Voluntary Eye Movement Tests in Patients with Insulin-dependent Diabetes Mellitus. Acta Otolaryngol 1993; 113(2): 123-7.
  18. Hirschberg M, Hofferberth B, Husstedt I, Zunkeler B. Oculomotor findings in patients suffering from diabetes mellitus. . Paper presented at the 15th NES congress March 17th-20th, 1988, Bad Kissingen, Germany. 1988.
  19. Nicholson M, King J, Smith P, Darlington C. Vestibuloocular, optokinetic and postural function in diabetes mellitus. Neuroreport 2002; 13(1): 153-7.
  20. Alessandrini M, Bruno E, Parisi V, Uccioli L, et al. Saccadic eye movement and visual pathways function in diabetic patients. An Otorrinolaringol Ibero Am 2001; 28(3): 269-80.
  21. Moheet A, Mangia S, Elizabeth R, Seaquist. Impact of diabetes on cognitive function and brain structure. Ann NY Acad Sci 2015; 1353: 60-71.
  22. Alessandrini M, Parisi V, Bruno E, Giacomini PG. Impaired saccadic eye movement in diabetic patients: the relationship with visual pathways function. Documenta Ophthalmologica 1999; 99(1): 11-20.
  23. Konrad HR. Clinical application of saccade-reflex testing in man. The Laryngoscope 1991; 101(12 Pt 1): 1293-302.
  24. Gawron W, Pospiech L, Orendorz-Fraczkowska K, Noczynska A. Are there any disturbances in vestibular organ of children and young adults with Type I diabetes? Diabetologia 2002; 45(5): 728-34.
  25. Gawron W, Wikiera B, Koziorowska-Gawron E, Budrewicz S, et al. Quantitative evaluation of visual-oculomotor and vestibulo-oculomotor reflexes in patients with type 1 diabetes related to the chosen parameters characterizing diabetes. Adv Clin Exp Med 2011; 20(2): 177-82.
  26. Aantaa E, Lehtonen A. Electronystagmographic Findings in Insulin-Dependent Diabetics. Acta Otolaryngol 1981; 91(1): 15-8.
  27. Hennekes R, Pillunat L. Asynchronism of saccadic eye movement in young diabetics as related to HbAIc. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 1985; 223(1): 50-2.
  28. Abd Al-Rahman M, Abdelhamid AW, Atea M. Value of Head Shake Sensory Organization Test (HS-SOT) in Detecting Subclinical Vestibular Disorders in Type 2 Diabetic Patients. Int Adv Otol 2010; 6(2): 245-51.
  29. Özel H,Özkiriş M, Gence Z, Saydam l. Audiovestibular functions in noninsulin-dependent diabetes mellitus. Acta Oto-Laryngologica 2014; 134(1): 51-7.
  30. Musen, G., I. Lyoo, C. Sparks, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 2006;55(2): 326-333.
  31. Hughes,T.M., C.M.Ryan, H.J.Aizenstein, et al. Frontal gray matter atrophy in middle aged adults with type 1 diabetes is independent of cardiovascular risk factors and diabetes complications. J. Diab. Compl. 2013; 27(6): 558-564.
  32. 32.Wessels, A.M., S. Simsek, P.L. Remijnse, et al. Voxelbasedmorphometry demonstrates reduced greymatter density on brainMRI in patients with diabetic retinopathy. Diabetologia 2006;49(10): 2474-2480.
  33. Hershey, T., D. Perantie, J. Wu, et al. Hippocampal volumes in youth with type 1 diabetes. Diabetes 2010; 59(1): 236–241.
  34. Moran, C., T.G. Phan, J. Chen, et al. Brain atrophy in type 2 diabetes regional distribution and influence on cognition. Diab. Care 2013; 36(12): 4036–4042.
  35. den Heijer, T., S.E. Vermeer, E.J. van Dijk, et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 2003; 46(12): 1604-1610.
  36. Brundel, M., M. van den Heuvel, J. de Bresser, et al. Cerebral cortical thickness in patients with type 2 diabetes. J. Neurol. Sci. 2010; 299(1-2): 126-130.
  37. Manschot, S.M., A.M.A.Brands, J. van derGrond, et al. Brain magnetic resonance imaging correlates of impaired cognition in patientswith type 2 diabetes. Diabetes 2006; 55(4): 1106-1113.
  38. van Elderen, S.G.C., A. de Roos, A.J.M. de Craen, et al. Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up. Neurology 2010; 75(11): 997.
  39. de Bresser J., A.M. Tiehuis, E. van den Berg, et al. Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes. Diab. Care 2010; 33:1309-1314.
  40. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, et al. Cerebral function in diabetes mellitus. Diabetologia 1994; 37(7): 643-50.
  41. Biurrun Oa, Ferrer JPb, Lorente Ja, de España Ra, Gomis Rb, Traserra Ja. Asymptomatic Electronystagmographic Abnormalities in Patients with Type I Diabetes mellitus. ORL 1991; 53(6): 335-8.
  42. Sailer U, Eqqert T, Straube A. Impaired temporal prediction and eye-hand coordination in patients with cerebellar lesions. Behav Brain Res 2005; 5: 72-87.
  43. Spector R, Troost B. The Ocular Motor System. Ann Neurol 1981; 9(6): 517-25.
  44. Di Nardo W, Ghirlanda G, Cercone S, Pitocco D, et al. The use of dynamic posturography to detect neurosensorial disorder in IDDM without clinical neuropathy. J Diabetes Complications 1999; 13(2): 79-85.
  45. Horst R,Konrad MD.Clinical application of saccade-reflex testing in man.Laryngoscope 1991; 101(12): 1293-1302.
  46. Agrawal Y, Carey JP, Della Santina CC, Schubert MC, et al. Diabetes, vestibular dysfunction, and falls: analyses from the national health and nutrition examination survey. Otology & Neurotology 2010; 31(9): 1445-50.
  47. Briggel M. Saccadic latency as a measure of afferent visual conduction. Invest Ophthalmol Vis Sci 1988; 29(8): 1331-3.
  48. Hamann K. Verlangsamte Sakkaden bei verschiedenen neurologischen Erkrankungen. Ophthalmologica 1979; 178(6): 357-64.
  49. Troost B, Daroff R. The ocular motor defects in supranuclear palsy. Ann Neurol 1977; 2(5): 397-403.