ارائه دو عامل آسیب رسان شنوایی، سطح آسیب را افزایش می دهد یا سبب محافظت می گردد؟

نوع مقاله: مقاله مروری

نویسندگان

1 دانشیار گروه گوش و حلق و بینی و جراحی سر و گردن، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران

2 دانشجوی دکتری تخصصی شنوایی‌شناسی، دانشکده توانبخشی، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران

3 دانشجوی دکتری تخصصی شنوایی‌شناسی، دانشکده توانبخشی، دانشگاه علوم پزشکی ایران، تهران، ایران

چکیده

هدف:
نویز و داروهای اتوتوکسیک از جمله مهمترین عوامل ایجاد کننده‌ی کم‌شنوایی دائمی می‌باشند. بطور معمول تصور بر این است که ارائه همزمان این عوامل آسیب‌رسان غالبا سطح آسیب شنوایی را به شکل غیر خطی بالا می برند، اما اگر روش ارائه این عوامل با دقت انتخاب شوند، نه تنها می‌توان میزان آسیب را کنترل کرد بلکه حتی می‌توان سطوحی از محافظت را نیز ایجاد کرد. این مطالعه‌ی مروری به بررسی این موضوع می پردازد که در چه شرایطی ارائه دو عامل آسیب‌رسان در کنار هم می‌تواند سبب محافظت شود و در چه مواردی سطح آسیب را بیشترمی نماید.
روش بررسی:
در این مطالعه‌ی مروری آخرین مقالات پیرامون آسیبهای شنوایی ناشی از نویز و داروهای اتوتوکسیک در بانکهای اطلاعاتی Science direct, Google scholar ,Springer, Magiran, Scopus ,Proquest  و Pubmed و با استفاده از کلید واژه‌های مرتبط در فواصل سالهای 1960 تا 2015 جستجو شد که از بین 125 مقاله مرتبط بدست آمده، 59 مقاله براساس یک روش گزینشی هدفمند جهت برررسی انتخاب شدند.
نتیجه‌گیری: 
ارائه عامل آسیب‌رسان شنوایی در مقادیر پایین و در بازه زمانی محدود می‌تواند دستگاههای حفاظتی درون سلول را فعال کند. این امر به نوبه خود مقاومت حلزون را در مقابل عوامل آسیب‌رسان افزایش می‌دهد. درک دقیق این بازه زمانی امکان ارائه مداخلات درمانی مناسب را فراهم خواهد ساخت.

کلیدواژه‌ها


  1. Strose A, Hyppolito MA, Colombari GC, Rossato M, de Oliveira JA. Lack of protection against gentamicin ototoxicity by auditory conditioning with noise. Braz J Otorhinolaryngol 2014; 80(5): 390-396.
  2. Canlon B, Borg E, Flock A. Protection against noise trauma by pre-exposure to a low level acoustic stimulus. Hear Res 1988; 34(2):197-200.
  3. Miller JD, Watson CS, Covell WP. Deafening effects of noise on the cat. Acta Otolaryngol Suppl 1963; 1: 176–91.
  4. Yoshida N, Liberman MC. Sound conditioning reduces noise-induced permanent threshold shift in mice. Hearing Research 2000; 148(1-2): 213-219.
  5. Theneshkumar S, Lorito G, Giordano P, Petruccelli J, Martini A, Hatzopoulos S. Effect of noise conditioning on cisplatin-induced ototoxicity: a pilot study. Med Sci Monit 2009; 15(7):173-7.
  6. Oliveira JAA, Canedo DM, Rossato M. Otoprotection of auditory hair cells against amikacin ototoxicity. Rev Bras Otorrino-laringol 2002; 68(1):7-13.
  7. Fernandez EA, Ohlemiller KK, Gagnon PM, Clark WW. Protection against noise-induced hearing loss in young CBA/J mice by low-dose kanamycin. J. Assoc. Res. Otolaryngol 2010; 11(2): 235-244.
  8. Ohlemiller KK, Mary E, Rybak RB, Allyson D, Rosen B, Scott CM, Patricia MG. Protection by low-dose kanamycin against noise-induced hearing loss in mice: Dependence on dosing regimen and genetic background. Hearing Research 2011; 280(1-2): 141-147.
  9. Maudonnet EN, Oliveira JAA, Rossato M, Hyppolito MA. Gentamicin attenuates gentamicin-induced ototoxicity self-protection. Drug Chem Toxicol 2008; 31(1):11-25.
  10. Gagnon PM, Simmons DD, Bao J, Lei D, Ortmann AJ, Ohlemiller KK. Temporal and genetic influences on protection against noise-induced permanent threshold shift by hypoxic preconditioning in mice. Hear Res 2007; 226(1-2): 79-91.
  11. Goncalves MS, Silveira AF, Teixeira AR, Hyppolito MA. Mechanisms of cisplatin ototoxicity: theoretical review. The Journal of Laryngology & Otology 2013; 127(6): 536-541.
  12. Brummett RE, Fox KE, Kempton JB. Quantitative relationships of the interaction between sound and kanamycin. Archives of Otolaryngology - Head and Neck Surgery 1992; 118(5): 498-500.
  13. Vernon J, Brown J, Meikle M, Brummett RE. The potentiation of noise - induced hearing loss by neomycin. Otolaryngology 1978; 86(1): 123-124.
  14. Tan CT, Hsu CJ, Lee SY, Liu SH, Lin-Shiau SY. Potentiation of noise-induced hearing loss by amikacin in guinea pigs. Hear Res; 2001: 161(1-2): 72-80.
  15. Gannon RP, Tso SS, Chung DY. Interaction of kanamycin and noise exposure. Journal of Laryngology and Otology 1979; 93(4): 341-347.
  16. Brown JJ, Brummett RE, Meikle MB, Vernon J. Combined effects of noise and neomycin Cochlear changes in the guinea pig. ActaOtolaryngol (Stockh) 1978; 86: 394-400.
  17. Collins PW. Synergistic interactions of gentamicin and pure tones causing cochlear hair cell loss in pigmented guinea pigs. Hear Res 1988; 36(23): 249-259.
  18. Harrison RTDeBacker JRBielefeld EC. A low dose regimen of cisplatin before high dose of cisplatin potentiates ototoxicity. Laryngoscope. 2015; 125(2): 43-49.
  19. Hongzhe Li, Peter Steyger. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics. NoiseHealth 2009; 11(42): 26-32.
  20. Gannon RP, Tso SS. The occult effect of Kanamycin on the cochlea. Excerpta Medica. 1969; 189: 98.
  21. Ryan AF, Bennett TM, Woolf NK, Axelsson A. Protection from noise-induced hearing loss by prior exposure to a non-traumatic stimulus: role of the middle ear muscles. Hear Res 1994; 72(1-2): 23-8.
  22. Mulroy MJ, Henry WR, McNeil PL. Noise-induced transient micro lesions in the cell membranes of auditory hair cells. Hear. Res 1998; 115: 93-100.
  23. Henderson D, Subramaniam M, Papazian M, Spongr VP. The role of middle ear muscles in the development of resistance to noise induced hearing loss. Hear Res 1994; 74: 22-28.
  24. Ohlemiller KK, Wright JS, Dugan LL. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neuro Otol 1999; 4(5): 229-236.
  25. Lim DJ, Melnick W. Acoustic damage of the cochlea. A scanning and transmission electron microscopic observation. Arch. Otolaryngol 1971; 94(4): 294-305.
  26. Ramkumar V, Whitworth CA, Pingle SC, Hughes LF, Rybak LP. Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hearing Research 2004; 188(1-2): 47-56.
  27. Xie J, Talaska AE, Schacht J. New developments in aminoglycoside therapy and ototoxicity. Hearing Research 2011; 281(1-2): 28-37.
  28. Ohinata Y, Yamasoba T, Schacht J, Miller JM. Glutathione limits noise-induced hearing loss. Hear. Res 2000; 146(1-2): 28-34.
  29. Seidman M, Babu S, Tang W, Naem E, Quirk WS. Effects of resveratrol on acoustic trauma. Otolaryngol. Head Neck Surg 2003; 129(5): 463-470.
  30. Cassandro E, Sequino L, Mondola P, Attanasio G, Barbar M, Filipo R. Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs—electrophysiological and biochemical study. Acta Otolaryngol. (Stockh) 2003; 123(7): 802-807.
  31. Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman EK, Scott RW, Wright JS, Putcha GV, Salvi RJ. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol. Neurootol 1999; 4(5): 237-246.
  32. Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS. Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J. Assoc. Res. Otolaryngol 2000; 1(3): 243-254.
  33. Ohlemiller KK. Recent Findings and Emerging Questions in Cochlear Noise Injury. HearRes 2008; 245(1-2): 5-17.
  34. Yamashita D, Jiang H, Schacht J, Miller JM. Delayed production of free radicals following noise exposure. Brain Res 2004; 1019(1-2): 201-209.
  35. Thorme PR, Munoz DJ, Housley GD. Purinergic modulation of cochlear partition resistance and its effect on the endocochlear potential in the Guinea pig. J Assoc Res Otolaryngol 2004; 5(1): 58-65.
  36. Chung WH, Pak K, Lin B, Webster N, Ryan AF 2006. A PI3K pathway mediates hair cell survival and opposes gentamicin toxicity in neonatal rat organ of Corti. J. Assoc. Res 2006; 7(4): 373-382.
  37. Jiang H, Sha SH, Schacht J. NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J. Neurosci. Res 2005; 79(5): 644-651.
  38. Battaglia A, Pak K, Brors D, Bodmer D, Frangos JA, Ryan AF. Involvement of ras activation in toxic hair cell damage of the mammalian cochlea. Neuroscience 2003; 122(4): 1025-1035.
  39. Vlasits AL, Simon JA, Raible DW, Rubel EW, Owens KN. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hearing Research 2012; 294(1-2): 153-165.
  40. Takahashi K, Kusakari J, Kimura STW, Hara A. The effect of methylprednisone on acoustic trauma. Acta Otolaryngol 1996; 116(2): 209-212.
  41. Samson J, Wiktorek-smagur A P, Politanski E, Rajkowska M, Pawlaczyk- luszczynska A, Dudarewicz SH, Schacht M. noise-induced time dependent changes in oxidative stress in the mouse cochlea and attenuated by D-Methionine. Neuroscience2008; 152(1): 146-150.
  42. Wang Y, Liberman MC. Restraint stress and protection from acoustic injury in mice. Hearing Res 2002; 165(1-2): 96-102.
  43. Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neuro-Otol 2000; 5(1): 3-22.
  44. Rilzzi MD, Hirose K. Aminoglyciside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 2007; 15(5): 352-357.
  45. Henley C, Rybak L. Ototoxicity in developing animals. Brain Res Rev 1995; 20(1): 68-90.
  46. Yoshida N, kristiansen A, liberman MC. Heat stress and protection from permanent acoustic injury in mice. J Neurosci 1999; 19(22): 10116-10124.
  47. Sommerschild HT, Kirkeboen KA. Preconditioning – endogenous defense mechanisms of the heart. Acta Anesthesiol. Scand 2002; 46(2): 123-137.
  48. Dringal U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 2003; 26(5): 248-254.
  49. Gidday JM. Cerebral preconditioning and ischaemic tolerance.nat. Rev. Neurosci 2006; 7(6): 437-448.
  50. Saunders JC, Chen CS. The sensitive period for ototoxicity of kanamycin in mice: Morphological evidence. Archives of oto-rhino-laryngology. 1983; 238(3): 217-223.
  51. Sha S, Zajic G, Epstein C, Schacht J. Overexpression of Copper/Zinc-Superoxide Dismutase Protects from Kanamycin-Induced Hearing Loss. Audiol Neurootol 2001; 6(3): 117-123.
  52. Whitlon DS, Wright LS, Nelson SA, Szakaly R, Siegel FL. Maturation of cochlear Glutathione-S-transferases correlates with the end of the sensitive period for ototoxicity. Hearing Research 1990; 137(1-2): 43-50.
  53. Zelck U, Nowak R, Karnstedt U, Koitschev A, Kacker N. Specific activities of antioxidative enzymes in the cochlea of guinea pigs at different stages of development. Eur. Arch. Otorhinolaryngol 1993; 250(4): 218-219.
  54. Lucas M, Delgado F, Lopez-Gonzalez MA. Aminoglycosides activate oxygen metabolites production in the cochlea of mature and developing rats. Hearing Research 1999; 136(1-2):165-168.
  55. White DR, Boettcher FA, Miles LR, Gratton MA. Effectiveness of intermittent and continuous acoustic stimulation in preventing noise-induced hearing and hair cell loss. J Acoust Soc Am 1998; 103(3): 1566-1572.
  56. Ohlemiller KK, Wright JS, Heidbeder AF. Vulnerability to noise-induced permanent threshold shift in ‘middle-aged’ and young adult mice: a dose-response approach in CBA, C57BL, and BALB inbred strains. Hear Res 2000; 149(1-2): 239-247.
  57. Owens KN, Coffin AB, Hong LS, Bennett KOC, Rubel EW, Raible DW. Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear. Res 2009; 253(1-2): 32-41.
  58. Chu H, Xiong H, Zhou X, Han F, Wu Z, Zhang P, et al. Aminoglycoside ototoxicity in three murine strains and effects on NKCC1 of stria vascularis. Chinese Medical Journal 2006; 119(12): 980-985.
  59. Mills JH, Boettcher FA, Dubno JR. Interaction of noise induced permanent threshold shift and age-related threshold shift. J. Acoust. Soc. Am 1997; 101: 1681-1686.