Comparative Evaluation of Topographic Characteristics in Bilateral Keratoconus with Unilateral Corneal Vogt’s Striae: A Contralateral Eye Study

Document Type : Original Article

Authors

1 Department of Ophthalmology, Cornea Specialist, Cornea Research Center, Khatam‐Al‐Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Optometry, Refractive Errors Research Center, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Optometry, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Optometry, Zahedan University of Medical Sciences, Zahedan, Iran

5 Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Purpose:
The aim of this study was to evaluate and compare topographic characteristics in bilateral keratoconus (KCN) patients with unilateral Vogt’s striae. 
Methods:
In this prospective cross-sectional contralateral eye study, the KCN patients that were enrolled in this study had a reliable diagnosis of bilateral clinical KCN with unilateral Vogt`s striae based on slit-lamp signs, as well as corneal topographic/tomographic maps. All the cases underwent a comprehensive ophthalmic examination, including uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA),cycloplegic refraction (calculated by vectorial analysis), and placido disc-based Tomey topographer (TMS-4; Tomey, Germany). In this study, clinical and topographic characteristics of all cases were evaluated and compared between the contralateral KCN eyes with Vogt`s striae and those without Vogt`s striae. Paired sample t-test was used to compare the parameters with a normal distribution and the Wilcoxon signed rank test was used to compare the non-parametric parameters. P-value Results:
Fifty patientsaged 20 to 38 years (27.43±5.46) were recruited in this study. Our results showed that there were significant differences in sphere, cylinder, spherical equivalent, UDVA, CDVA and J0 (all p<0.001) except for J45 (p=0.58) between the contralateral eyes of KCN patients. In KCN eyes with Vogt’s striae, flat (46.48±3.33 vs 44.44±2.22, p<0.001), steep (52.48±4.39 vs 47.02±3.26, p<0.001), minimum (46.36±3.37 vs 44.35±2.17, p<0.001) and average keratometry (49.27±3.96 vs 45.74±2.60, P<0.001) as well as Surface Regularity Index (1.39±1.12 vs 0.52±0.41, p<0.001), Surface Asymmetry Index (2.32±1.25 vs 1.42±1.04, P<0.001), Keratoconus Index (75.07±28.83 vs 48.01±33.52, p<0.001) and Keratoconus Severity Index (65.88±22.25 vs 38.61±29.40, p<0.001)were higher than the contralateral eye without Vogt’s striae.
Conclusion:
Corneal topographic parameters showed a significant difference between the contralateral KCN eyes with and without Vogt’s striae. These results should be noticed in clinical evaluations and treatments of KCN patients.

Keywords

Main Subjects


  1. Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42(4): 297-319.
  2. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye 2010; 33(4):157-66.
  3. Aydin Kurna S, Altun A, Gencaga T, Akkaya S, et al. Vision related quality of life in patients with keratoconus. J Ophthalmol 2014; 2014: 694542.
  4. Hirneiss C. The impact of a better-seeing eye and a worse-seeing eye on vision-related quality of life Clin Ophthalmol 2014; 3(8): 1703-9.
  5. Kymes SM, Walline JJ, Zadnik K, Sterling J, et al. Changes in the quality-of-life of people with keratoconus. Am J Ophthalmol 2008; 145(4): 611-7. e1.
  6. Hashemi H, Beiranvand A, Khabazkhoob M, Asgari S, et al. Prevalence of keratoconus in a population-based study in Shahroud. Cornea 2013; 32(11): 1441-5.
  7. Jonas JB, Nangia V, Matin A, Kulkarni M, et al. Prevalence and associations of keratoconus in rural maharashtra in central India: the central India eye and medical study. Am J Ophthalmol 2009; 148(5): 760-5.
  8. Zadnik K, Barr JT, Edrington TB, Everett DF, et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Invest Ophthalmol Vis Sci 1998; 39(13): 2537-46.
  9. Hollingsworth JG, Efron N. Observations of banding patterns (Vogt striae) in keratoconus: a confocal microscopy study. Cornea 2005; 24(2): 162-6.
  10. Somodi S, Hahnel C, Slowik C, Richter A, et al. Confocal in vivo microscopy and confocal laser-scanning fluorescence microscopy in keratoconus. Ger J Ophthalmol 1996; 5(6): 518-25.
  11. Chung S-H, Kim EK. Keratoconus with unilateral horizontal stress lines. Cornea 2005; 24(7): 890.
  12. Gungor IU, Beden U, Sonmez B. Bilateral horizontal Vogt's striae in keratoconus. Clin Ophthalmol 2008; 2(3): 653-5.
  13. Auffarth GU, Wang L, Völcker HE. Keratoconus evaluation using the Orbscan topography system. J Cataract Refract Surg 2000; 26(2): 222-8.
  14. Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. J Cataract Refract Surg 1989; 5(6): 400-8.
  15. Mocan MC, Yilmaz PT, Irkec M, Orhan M. The significance of Vogt's striae in keratoconus as evaluated by in vivo confocal microscopy. Clin Exp Ophthalmol 2008; 36(4): 329-34.
  16. Kalezic T, Vukovic I, Andjelkovic M, Gajic M, et al. The effects of cycloplegic eyedrops on corneal tomography J Fr Ophtalmol 2016; 39(10): 829-35.
  17. Read SA, Collins MJ, Carney LG. The diurnal variation of corneal topography and aberrations Cornea 2005; 24(6): 678-87.
  18. Kiely PM, Carney LG, Smith G. Diurnal variations of corneal topography and thickness. American journal of optometry and physiological optics 1982; 59(12): 976-82.
  19. Zadnik K, Friedman NE, Mutti DO. Repeatability of corneal topography: the "corneal field". J Refract Surg 1995; 11(2): 119-25.
  20. Módis Jr L, Szalai E, Kolozsvári B, Németh G, et al. Keratometry evaluations with the Pentacam high resolution in comparison with the automated keratometry and conventional corneal topography Cornea 2012; 31(1): 36-41.
  21. Rabinowitz YS, Rasheed K. KISA% index: a quantitative video keratography algorithm embodying minimal topographic critera for diagnosing keratoconus. J Cataract Refract Surg 1999; 25: 1327–1335.
  22. Thibos LN, Horner D. Power vector analysis of the optical outcome of refractive surgery. J Cataract Refract Surg 2001; 27(1): 80-5.
  23. Wagner H, Barr JT, Zadnik K. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study: methods and findings to date. Cont Lens Anterior Eye 2007; 30(4): 223-32.
  24. Grieve K, Ghoubay D, Georgeon C, Latour G, et al. Stromal striae: a new insight into corneal physiology and mechanics. Sci Rep 2017; 7(1):13584.
  25. Cavas-Martínez F, De la Cruz Sánchez E, Martínez JN, Cañavate FF, et al. Corneal topography in keratoconus: state of the art. Eye Vis 2016; 3(1): 5.
  26. Wilson SE, Lin DT, Klyce SD. Corneal topography of keratoconus. Cornea 1991; 10(1): 2-8.
  27. Lim L, Wei RH, Chan WK, Tan DT. Evaluation of keratoconus in Asians: role of Orbscan II and Tomey TMS-2 corneal topography. Am J Ophthalmol 2007; 143(3): 390-400.
  28. Raasch TW, Schechtman KB, Davis LJ, Zadnik K. Repeatability of subjective refraction in myopic and keratoconic subjects: results of vector analysis. Ophthalmic Physiol Opt 2001; 21(5): 376-83.
  29. Alpins N. Astigmatism analysis by the Alpins method. J Cataract Refract Surg 2001; 27(1): 31-49.
  30. Alpins NA. A new method of analyzing vectors for changes in astigmatism. J Cataract Refract Surg 1993; 19(4): 524-533.
  31. Wittig-silva C, Chan E, Islam FM, Wu T, et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology 2014; 121(4): 812-21.
  32. O’Brart DP, Chan E, Samaras K, Patel P, et al. A randomized, prospective study to investigate the efficacy of riboflavin/ultraviolet a (370 nm) corneal collagen cross-linking to halt progression of keratoconus. Br J Ophthalmol 2011; 95: 1519-24.
  33. Sykakis E, Karim R, Evans JR, Bunce C, et al. Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst Rev 2015; 28(3): CD010621.
  34. Epstein RL, Chiu YL, Epstein GL. Pentacam HR criteria for curvature change in keratoconus and postoperative LASIK ectasia. J Refract Surg 2012; 28(12): 890-4.
  35. Mahmoud AM, Nuñez MX, Blanco C, Koch DD, et al. Expanding the cone location and magnitude index to include corneal thickness and posterior surface information for the detection of keratoconus. Am J Ophthalmol 2013; 156(6): 1102–11.
  36. De sanctis U, Loiacono C, Richiardi L, Turco D, et al. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/ subclinical keratoconus. Ophthalmology 2008; 115(9): 1534-9.
  37. Tomidokoro A, Oshika T, Amano S, Higaki S, et al. Changes in anterior and posterior corneal curvatures in keratoconus. Ophthalmology 2000; 107(7): 1328-32.
  38. Goto T, Klyce SD, Zheng X, Maeda N, Kuroda T, Ide C. Gender- and age-related differences in corneal topography. Cornea. 2001; 20(3): 270-6.
  39. Pearson AR, Soneji B, Sarvananthan N, Sandford-Smith JH. Does ethnic origin influence the incidence or severity of keratoconus? Eye (London, England) 2000; 14 (Pt 4): 625-8.
  40. Liu Z, Pflugfelder SC. Corneal thickness is reduced in dry eye. Cornea 1999; 18(4): 403-7.
  41. Ambrosio R, Jr., Belin MW. Imaging of the cornea: topography vs tomography. Journal of refractive surgery (Thorofare, NJ: 1995) 2010; 26(11): 847-9.