An Overview‏ ‏of the B iological Function of Selenium and Selenoproteins in the Body and Its ‎Effect on Diabetes

Document Type : Review Article

Author

Department of Laboratory Sciences, School of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Propose:
Selenium is an essential ultra-trace element that regulates many biological processes including cellular response to oxidative stress, redox signaling, cell differentiation, and immune response. In addition, selenium is also involved in the synthesis of thyroid hormones, which regulates the basal metabolism in all body tissues. In this article, the function of selenium and selenoproteins as well as their role in various processes and the occurrence of diabetes are investigated.
Methods: In this research, 79 articles between 1984 and 2023 from PubMed, Web of Science, Scopus, and SID databases were reviewed regarding the function of selenium and selenoproteins.
Results:
The biochemical and cellular effects of selenium are obtained through the activity of selenoproteins containing selenocysteine. In this article, some of the protective effects of selenium and selenoproteins in different parts, such as antioxidant defense, cardiovascular system, brain function, cell differentiation, cancer prevention, immune system regulation and detoxification of heavy metals were mentioned. The effects of selenium on health are complex, and consuming super-nutritional doses of selenium can increase the risk of type 2 diabetes. In recent decades, optimizing selenium intake to prevent diseases related to selenium deficiency or excess has been recognized as an important issue in global health. Considering that the basic level of selenium is not the same in different populations, including in Iran, there is a need for separate studies to determine the reference range.
Conclusion:
Selenium as a redox center plays different roles in selenoproteins. More relevant basic and clinical studies are expected to maximize the benefits of selenium use and help reduce its potential risks. Also, the investigation of hidden mechanisms in the field of selenium effects on various diseases requires more studies.

Keywords


  1. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014; 94(3): 739-777.
  2. Castellano S, Andrés AM, Bosch E, Bayes M, et al. Low exchangeability of selenocysteine, the 21st amino acid, in vertebrate proteins. Mol Biol Evol 2009; 26(9): 2031-2040.
  3. Zhang Y, Romero H, Salinas G, Gladyshev VN. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol 2006; 7(10): R94.
  4. Peeler JC, Weerapana E. Chemical Biology Approaches to Interrogate the Selenoproteome. Acc Chem Res 2019; 52(10): 2832-2840.
  5. Steinbrenner H, Sies H. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 2009; 1790(11): 1478-1485.
  6. Schomburg L, Köhrle J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food Res 2008; 52(11): 1235-1246.
  7. Hill KE, Wu S, Motley AK, Stevenson TD, et al. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J Biol Chem 2012; 287(48): 40414-40424.
  8. Burk RF, Hill KE. Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 2009; 1790(11): 1441-1447.
  9. Beilstein MA, Vendeland SC, Barofsky E, Jensen ON, Whanger PD. Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J Inorg Biochem 1996; 61(2): 117-1124.
  10. Pozzer D, Varone E, Chernorudskiy A, Schiarea S, et al. A maladaptive ER stress response triggers dysfunction in highly active muscles of mice with SELENON loss. Redox Biol 2019; 20: 354-366.
  11. Curran JE, Jowett JB, Elliott KS, Gao Y, et al. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 2005; 37(11): 1234-1241.
  12. Minich WB. Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochemistry Mosc 2022; 87(Suppl 1): S168-S177.
  13. Fallah S, Valinejad Sani F, Firoozrai M. Effect of contraceptive pills on the activity status of the antioxidant enzymes glutathione peroxidase and superoxide dismutase in healthy subjects. Contraception 2011; 83(4): 385-389.
  14. Fallah S, Sani FV, Firoozrai M. Effect of contraceptive pill on the selenium and zinc status of healthy subjects. Contraception  2009; 80(1): 40-43.
  15. Imai H, Nakagawa Y. Biological significance of lipid hydroperoxide and its reducing enzyme, phospholipid hydroperoxide glutathione peroxidase, in mammalian cells. Free Radic Biol Med 2003; 34(2):  145-169.
  16. Björnstedt M, Xue J, Huang W, Akesson B, Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 1994; 269(47): 29382-29384.
  17. Cunniff B, Snider GW, Fredette N, Hondal RJ, Heintz NH. A direct and continuous assay for the determination of thioredoxin reductase activity in cell lysates.  Anal Biochem 2013; 443(1): 34-40.
  18. Jeong D, Kim TS, Chung YW, Lee BJ, Kim IY. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett 2002; 517(1-3): 225-228.
  19. Kim KH, Gao Y, Walder K, Collier GR, et al. SEPS1 protects RAW264.7 cells from pharmacological ER stress agent-induced apoptosis. Biochem Biophys Res Commun 2007; 354(1): 127-132.
  20. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 2001; 280(4): C719- C741.
  21. Loscalzo J. Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med. 2014; 370(18): 1756-1760.
  22. Liu X, Wang Y, Han S, Zhang Y, et al. A Spatial Ecological Study on Serum Selenium and Keshan Disease in Heilongjiang Province, China. Biol Trace Elem Res 2021; 199(9): 3253-3261.
  23. Krohn RM, Lemaire M, Negro Silva LF, Lemarié C,  et al. High-selenium lentil diet protects against arsenic-induced atherosclerosis in a mouse model. J Nutr Biochem 2016; 27: 9-15.
  24. Zhang Y, Cartland SP, Henriquez R, Patel S, et al. Selenomethionine supplementation reduces lesion burden, improves vessel function and modulates the inflammatory response within the setting of atherosclerosis. Redox Biol 2020; 29: 101409.
  25. Alissa EM, Bahijri SM, Ferns GA. The controversy surrounding selenium and cardiovascular disease: a review of the evidence. Med Sci Monit 2003; 9(1): Ra9- Ra18.
  26. Luoma PV, Sotaniemi EA, Korpela H, Kumpulainen J. Serum selenium, glutathione peroxidase activity and high-density lipoprotein cholesterol--effect of selenium supplementation. Res Commun Chem Pathol Pharmacol 1984; 46(3): 469-472.
  27. Maiorino M, Conrad M, Ursini F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid Redox Signal 2018; 29(1): 61-74.
  28. Ingold I, Berndt C, Schmitt S, Doll S, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 2018; 172(3): 409-422.e21.
  29. Virtamo J, Valkeila E, Alfthan G, Punsar S, et al. Serum selenium and the risk of coronary heart disease and stroke. Am J Epidemiol 1985; 122(2): 276-282.
  30. Jenkins DJA, Spence JD, Giovannucci EL, Kim YI, et al. Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J Am Coll Cardiol 2018; 71(22): 2570-2584.
  31. Chinta SJ, Andersen JK. Redox imbalance in Parkinson's disease. Biochim Biophys Acta 2008; 1780(11): 1362-1367.
  32. Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B. The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J Neurochem 1999; 72(6): 2523-2530.
  33. Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13(5): 799.
  34. Gao S, Jin Y, Hall KS, Liang C, et al. Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 2007; 165(8): 955-965.
  35. Corcoran NM, Martin D, Hutter-Paier B, Windisch M, et al. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer's disease model. J Clin Neurosci 2010; 17(8): 1025-1033.
  36. Sophiabadi M, Rastgoo N, Haghdoost-Yazdi H. Dopaminergic Neuronal Death in Substantia Nigra Associates with Serum Levels of Total Bilirubin, Selenium, and Zinc: Evidences from 6-Hydroxydopamine Animal Model of Parkinson's Disease. Biol Trace Elem Res 2022; 200(9): 4058-4067.
  37. Ellwanger JH, Molz P, Dallemole DR, Pereira dos Santos A, et al. Selenium reduces bradykinesia and DNA damage in a rat model of Parkinson's disease. Nutrition 2015; 31(2): 359-365.
  38. Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 2014; 289(13): 8735-8741.
  39. Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 2013; 65: 1538-1547.
  40. Steinbrenner H, Speckmann B, Sies H. Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 2013; 19(2): 181-191.
  41. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 2009; 284(16): 10601-10609.
  42. Findeisen HM, Pearson KJ, Gizard F, Zhao Y, et al. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS One 2011; 6(4): e18532.
  43. Circu ML, Aw TY. Redox biology of the intestine. Free Radic Res 2011; 45(11-12): 1245-1266.
  44. Yu SY, Zhu YJ, Li WG. Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biol Trace Elem Res 1997; 56(1): 117-124.
  45. Flowers B, Poles A, Kastrati I. Selenium and breast cancer - An update of clinical and epidemiological data. Arch Biochem Biophys 2022; 732: 109465.
  46. Clark LC, Dalkin B, Krongrad A, Combs GF, et al. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol 1998; 81(5): 730-734.
  47. Mukhtar M, Ashfield N, Vodickova L, Vymetalkova V, et al. The Associations of Selenoprotein Genetic Variants with the Risks of Colorectal Adenoma and Colorectal Cancer: Case-Control Studies in Irish and Czech Populations. Nutrients 2022; 14(13): 2718.
  48. Baliga MS, Wang H, Zhuo P, Schwartz JL, Diamond AM. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage. Biol Trace Elem Res 2007; 115(3): 227-242
  49. Gong D, Sun K, Yin K, Wang X. Selenium mitigates the inhibitory effect of TBBPA on NETs release by regulating ROS/MAPK pathways-induced carp neutrophil apoptosis and necroptosis. Fish Shellfish Immunol 2023; 132: 108501.
  50. Huang LJ, Mao XT, Li YY, Liu DD, et al. Multiomics analyses reveal a critical role of selenium in controlling T cell differentiation in Crohn's disease.  Immun 2021; 54(8): 1728-1744.e7.
  51. Nelson SM, Lei X, Prabhu KS. Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. J Nutr 2011; 141(9): 1754-1761.
  52. Winterbourn CC, Kettle AJ, Hampton MB. Reactive Oxygen Species and Neutrophil Function. Annu Rev Biochem 2016; 85: 765-792.
  53. Boyne R, Arthur JR. The response of selenium-deficient mice to Candida albicans infection. J Nutr 1986; 116(5): 816-822.
  54. Miller AL. The etiologies, pathophysiology, and alternative/ complementary treatment of asthma. Altern Med Rev 2001; 6(1): 20-47.
  55. Ahmad S, Mahmood R. Mercury chloride toxicity in human erythrocytes: enhanced generation of ROS and RNS, hemoglobin oxidation, impaired antioxidant power, and inhibition of plasma membrane redox system. Environ Sci Pollut Res Int 2019; 26(6): 5645-5657.
  56. Casalino E, Sblano C, Landriscina C. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 1997; 346(2): 171-179.
  57. Cao X, Fu M, Bi R, Zheng X, et al. Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway. Chemosphere 2021; 263: 128346.
  58. Chayapong J, Madhyastha H, Madhyastha R, Nurrahmah QI, et al. Arsenic trioxide induces ROS activity and DNA damage, leading to G0/G1 extension in skin fibroblasts through the ATM-ATR-associated Chk pathway. Environ Sci Pollut Res Int 2017; 24(6): 5316-5325.
  59. Bramanti E, Onor M, Colombaioni L. Neurotoxicity Induced by Low Thallium Doses in Living Hippocampal Neurons: Evidence of Early Onset Mitochondrial Dysfunction and Correlation with Ethanol Production. ACS Chem Neurosci 2019; 10(1): 451-459.
  60. Fan Y, Zhao X, Yu J, Xie J, et al. Lead-induced oxidative damage in rats/mice: A meta-analysis. J Trace Elem Med Biol 2020; 58: 126443.
  61. Park HJ, Kim JY, Kim J, Lee JH, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 2009; 43(4): 1027-1032.
  62. Chitta KR, Landero Figueroa JA, Caruso JA, Merino EJ. Selenium mediated arsenic toxicity modifies cytotoxicity, reactive oxygen species and phosphorylated proteins. Metallomics 2013; 5(6): 673-685.
  63. Saikiran G, Mitra P, Sharma S, Kumar PK, Sharma P. Selenium, oxidative stress and inflammatory markers in handicraft workers occupationally exposed to lead. Arch Environ Occup Health 2022; 77(7): 561-567.
  64. Sun HJ, Rathinasabapathi B, Wu B, Luo J, et al. Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 2014; 69: 148-158.
  65. Clark LC, Combs GF, Turnbull BW, Slate EH, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996; 276(24): 1957-1963.
  66. Stranges S, Marshall JR, Natarajan R, Donahue RP, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007; 147(4): 217-223.
  67. Steinbrenner H, Speckmann B, Pinto A, Sies H. High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr 2011; 48(1): 40-45.
  68. Vinceti M, Filippini T, Rothman KJ. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol 2018; 33(9): 789-810.
  69. Misu H, Takayama H, Saito Y, Mita Y, et al. Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med 2017; 23(4): 508-516.
  70. Misu H, Takamura T, Takayama H, Hayashi H, et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metabol 2010; 12(5):483-495.
  71. Harmon JS, Bogdani M, Parazzoli SD, Mak SS, et al. beta-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinol 2009; 150(11): 4855-4862.
  72. Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, et al. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetol 2008; 51(8): 1515-1524.
  73. Lv Y, Xie L, Dong C, Yang R, et al. Co-exposure of serum calcium, selenium and vanadium is nonlinearly associated with increased risk of type 2 diabetes mellitus in a Chinese population. Chemosphere 2021; 263: 128021.
  74. Alfthan G, Xu GL, Tan WH, Aro A, et al. Selenium supplementation of children in a selenium-deficient area in China: blood selenium levels and glutathione peroxidase activities. Biol Trace Elem Res 2000; 73(2): 113-125.
  75. Koller LD, Exon JH. The two faces of selenium-deficiency and toxicity--are similar in animals and man. Can J Vet Res 1986; 50(3): 297-306.
  76. Rao A, Jericho H, Patton T, Sriram S, et al. Factors Affecting Selenium Status in Infants on Parenteral Nutrition Therapy. J Pediatr Gastroenterol Nutr 2021; 73(3): e73-e78.
  77. Tinggi U. Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 2003; 137(1-2): 103-110.
  78. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, et al. A summary of new findings on the biological effects of selenium in selected animal species—a critical review. Int J Mol Sci 2017; 18(10): 2209.
  79. Fallah S, Valinezhad Sani F, Firoozrai M. Study of the effect of oral contraceptive pills on the serum selenium and zinc levels. Studies in Medical Sciences. 2008; 19(3): 231-235. [Persian]