Investigation of Corneal Elevation, Astigmatism and Best Fit Sphere in Different stages of Keratoconus

Document Type : Original Article

Authors

1 Msc Student, Department of Optometry, Schoolof Rehabilitation, Shahid Beheshti University of Medical Science

2 MSc of Optometry, Eye research centre, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran

3 PhD, Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Science, Tehran, Iran

4 ophthalmologist, Eye Research center, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran

5 PhD student, Department of Optometry, School of Paramedicine, Mashhad University of Medical Science, Mashhad, Iran

6 Master of Science in Statistics, School of Rehabilitation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Purpose:
To investigate and determine the values of corneal elevation, astigmatism and best fit sphere (BFS) in anterior and posterior surfaces of the cornea in different stages of keratoconus (KCN) and to determine their differences and correlations
Methods:
In this retrospective study, 161 eyes of 161 KCN patients with mean age ± SD of 22.35 ± 6.10 years were examined using Pentacam HR (Oculus, Germany). Corrected distance visual acuity, spherical refractive error, astigmatism and outcomes of Scheimpflug-based imaging system were assessed based on the Amsler-Krumeich KCN classification.
Results:
The mean corrected distance visual acuity was different between all stages of KCN (Kruskal-Wallis, p≤0.001). Magnitude of corneal anterior and posterior BFS, elevation and astigmatism were different in 4 stages of KCN (Kruskal-Wallis test, P≤0.5). There were strong correlations between anterior and posterior astigmatism in grade 1 (p≤0.001, r=0.924), anterior and posterior elevation in grade 2 (p≤0.001, r=0.903) and anterior and posterior BFS in total group of KCN (p≤0.001, r=0.923).
Conclusion:
This study showed the values of corneal elevation, astigmatism and BFS in anterior and posterior surfaces of the cornea in different stages of KCN. Also, we determined strong correlation between some anterior and posterior parameters but not for all. Our findings can be used in clinical assessment of KCN.

Keywords

Main Subjects


  1. Mohammadpour M, Hahemi H, Jabbarvand M. Technique of simultaneous femtosecond laser assisted Myoring implantation and accelerated intrastromal collagen cross-linking for management of progressive keratoconus: A novel technique. Contact Lens and Anterior Eye 2016; 39(1): 9-14.
  2.  Abu-Amero KK, Helwa I, Al-Muammar A, Strickland S, Hauser MA, Allingham RR, Liu Y. Case-control association between CCT-associated variants and keratoconus in a Saudi Arabian population. Journal of negative results in biomedicine 2015; 14(1):10.
  3. Elsaftawy HS, Ahmed MH, Saif MY, Mousa R. Sequential Intracorneal Ring Segment Implantation and Corneal Transepithelial Collagen Cross-Linking in Keratoconus. Cornea 2015; 34(11): 1420-6.
  4. McAnena L, O’Keefe M. Corneal collagen crosslinking in children with keratoconus. Journal of American Association for Pediatric Ophthalmology and Strabismus 201; 19(3): 228-32.
  5. Goebels S, Käsmann-Kellner B, Eppig T, Seitz B, Langenbucher A. Can retinoscopy keep up in keratoconusdiagnosis? Contact Lens and Anterior Eye 2015; 38(4): 234-9.
  6. Shabayek MH, Alió JL. Intrastromal corneal ring segment implantation by femtosecond laser for keratoconus correction. Ophthalmology 2007; 114(9):1643-52.
  7.  Li X, Rabinowitz YS, Rasheed K, Yang H. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 2004; 111(3): 440-6.
  8. Maeda N, Fujikado T, Kuroda T, Mihashi T, Hirohara Y, Nishida K, Watanabe H, Tano Y. Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 2002; 109(11): 1996-2003.
  9. Kamiya K, Shimizu K, Igarashi A, Miyake T. Assessment of anterior, posterior, and total central corneal astigmatism in eyes with keratoconus American journal of ophthalmology 2015; 160(5): 851-7.
  10. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297-319.
  11. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Contact Lens and Anterior Eye 2010; 33(4): 157-66.
  12. Göncü T, Akal A, Adbelli FM, Çakmak S, Sezen H, Ylmaz ÖF. Tear Film and Serum Prolidase Activity and Oxidative Stress in Patients with Keratoconus. Cornea 2015; 34(9): 1019-23.
  13. oprak I, Yaylalı V, Yildirim C. A combination of topographic and pachymetric parameters in keratoconus diagnosis. Contact Lens and Anterior Eye 2015; 38(5): 357-62.
  14. Mazzotta C, Balestrazzi A, Traversi C, Baiocchi S, Caporossi T, Tommasi C, Caporossi A. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea 2007; 26(4): 390-7.
  15. Uçakhan ÖÖ, Çetinkor V, Özkan M, Kanpolat A. Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes. Journal of Cataract & Refractive Surgery 2011; 37(6): 1116-24.
  16. de Sanctis U, Loiacono C, Richiardi L, Turco D, Mutani B, Grignolo FM. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology 2008; 115(9): 1534-9.
  17. Alió JL, Piñero DP, Alesón A, Teus MA, Barraquer RI, Murta J, Maldonado MJ, de Luna GC, Gutiérrez R, Villa C, Uceda-Montanes A. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. Journal of Cataract & Refractive Surgery 2011; 37(3): 552-68.
  18. Nakagawa T, Maeda N, Kosaki R, Hori Y, Inoue T, Saika M, Mihashi T, Fujikado T, Tano Y. Higher-order aberrations due to the posterior corneal surface in patients with keratoconus. Investigative ophthalmology & visual science 2009; 50(6): 2660-5.
  19. Piñero DP, Alió JL, Alesón A, Vergara ME, Miranda M. Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. Journal of Cataract & Refractive Surgery 2010; 36(5): 814-25.
  20. Naderan M, Shoar S, Naderan M, Kamaleddin MA, Rajabi MT. Comparison of corneal measurements in keratoconic eyes using rotating Scheimpflug camera and scanning-slit topography. International journal of ophthalmology 2015; 8(2): 275.
  21. Orucoglu F, Toker E. Comparative analysis of anterior segment parameters in normal and keratoconus eyes generated by scheimpflug tomography. Journal of ophthalmology 2015; 2015:925414.
  22. Schlegel Z, Hoang-Xuan T, Gatinel D. Comparison of and correlation between anterior and posterior corneal elevation maps in normal eyes and keratoconus-suspect eyes. Journal of Cataract & Refractive Surgery 2008; 34(5): 789-95.
  23. Tomidokoro A, Oshika T, Amano S, Higaki S, Maeda N, Miyata K. Changes in anterior and posterior corneal curvatures in keratoconus. Ophthalmology 2000; 107(7): 1328-32.
  24. Rao SN, Raviv T, Majmudar PA, Epstein RJ. Role of Orbscan II in screening keratoconus suspects before refractive corneal surgery. Ophthalmology 2002; 109(9): 1642-6.
  25. Naderan M, Rajabi MT, Zarrinbakhsh P. Distribution of Anterior and Posterior Corneal Astigmatism in Eyes WithKeratoconus. American journal of ophthalmology 2016; 167: 79-87.
  26. Dubbelman M, Sicam VA, Van der Heijde GL. The shape of the anterior and posterior surface of the aging human cornea. Vision Res 2006; 46(6-7):  993-1001.