زاویه خیسی و رطوبت پذیری لنزهای تماسی

نوع مقاله: مقاله مروری

نویسندگان

1 کارشناس اپتومتری، مرکز تحقیقات عیوب انکساری چشم، دانشگاه علوم پزشکی مشهد، مشهد، ایران

2 دکترای تخصصی اپتومتری، گروه اپتومتری، دانشکده علوم توانبخشی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

3 مربی گروه اپتومتری، کارشناس ارشد اپتومتری، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران

4 کارشناس ارشد اپتومتری، مرکز تحقیقات عیوب انکساری چشم، دانشگاه علوم پزشکی مشهد، مشهد، ایران

5 دانشجوی دکترای تخصصی اپتومتری، دانشکده علوم توانبخشی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

چکیده

هدف:
این مقاله، تعریف و اندازه­ گیری زاویه تماس خیسی، رطوبت پذیری لنز تماسی، تأثیر لایه اشک و محلول های لنز تماسی بر زاویه خیسی را مرور می ­نماید. همچنین، عملکرد بالینی این پارامترها نیز مورد بحث قرار خواهند گرفت.
روش بررسی:
در این مقاله مروری، مقالات منتشر شده در زمینه زاویه خیسی و رطوبت پذیری لنزهای تماسی، با استفاده از پایگاه های اطلاعاتی PubMed مورد بررسی قرار گرفت. بر اساس معیارهای ورود و خروج (مقالات بین سال های 1975 تا 2017، ارتباط با عنوان و موضوع بحث، رفرنس اصلی، عدم تکراری بودن، عدم تشابه موضوعی)، 66 مقاله با دقت، تحت مطالعه قرار گرفتند.
نتیجه­ گیری:
پارامترهای مختلفی از لنز تماسی در راحتی بیمار با لنز تاثیر دارند که این پارامترها شامل عبوردهی اکسیژن، ماده لنز، طرح لبه لنز، سختی لنز، ضخامت لنز و روشهای بهبود سطح می باشند. چنانچه تمام این فاکتورها را کنترل و ثابت در نظر بگیریم و تنها متغیر رطوبت پذیری باشد، رطوبت پذیری بهتر می تواند پارامتر مهمی در راحتی بیمار باشد. روابط بین زاویه خیسی، رطوبت ­پذیری و راحتی به دلیل وجود فاکتورهای متعدد، جای بحث دارد بطوری که این موضوع نیاز به تحقیقات بیشتر، در این زمینه دارد.

کلیدواژه‌ها

موضوعات


  1. Maldonado-Codina C, Efron N. Dynamic wettability of pHEMAbased hydrogel contact lenses. Ophthal Physiol Opt 2006; 26: 408-18.
  2.  Maldonado-Codina C, Efron N. Impact of manufacturing technology and material composition on the surface characteristics of hydrogel contact lenses. Clin Exp Optom. 2005; 88(6): 396-404.
  3.  Wheeler JC, Woods JA, Cox MJ, Cantrell RW, et al. Evolution of hydrogel polymers as contact lenses, surface coatings, dressings, and drug delivery systems. J Long Term Eff Med Implants 1996; 6(3-4): 207-17.
  4.  Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 1998; 74(1): 69-117.
  5.  Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008; 29(20): 2941-53.
  6.  Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromol Biosci 2007; 7(5): 552-66.
  7.  Lee JH, Khang G, Lee JW, Lee HB. Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci 1998; 205(2): 323-30.
  8. Dumbleton KA, Chalmers RL, Richter DB, Fonn D. Vascular response to extended wear of hydrogel lenses with high and low oxygen permeability. Optom Vis Sci 2001; 78(3): 147-51.
  9. Holly FJ. Tear film physiology and contact lens wear. II. Contact lens-tear film interaction. Optom Vis Sci 1981; 58(4): 331-41.
  10. Young G, Veys J, Pritchard N, Coleman S. A multi‐centre study of lapsed contact lens wearers. Ophthalmic Physiol Opt 2002; 22(6): 516-27.
  11. Asbell PA. Contact Lens Discomfort: Can We Prevent Dropout? Eye Contact Lens. 2017; 43(1):1.
  12. Schlanger JL. A study of contact lens failures. J Am Optom Assoc 1993; 64(3): 220-4.
  13. Doughty MJ, Fonn D, Richter D, Simpson T, et al. A patient questionnaire approach to estimating the prevalence of dry eye symptoms in patients presenting to optometric practices across Canada. Optom Vis Sci 1997; 74(8): 624-31.
  14. Pearson RM. A review of the limitations of the first hydrogel contact lenses. Clin Exp Optom 2010; 93(1): 15-25.
  15. Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials 2001; 22(24): 3273-83.
  16. Nicolson PC. Continuous wear contact lens surface chemistry and wearability. Eye Contact Lens 2003; 29(1): S30-2.
  17. Hutter JC, Green JA, Eydelman MB. Proposed silicone hydrogel contact lens grouping system for lens care product compatibility testing. Eye Contact Lens 2012; 38(6): 358-62.
  18. Wedler F, Illman B, Horensky D, Mowrey‐McKee M. Analysis of protein and mucin components deposited on hydrophilic contact lenses. Clin Exp Optom 1987; 70(2): 59-68.
  19. Wedler, F.C., Analysis of biomaterials deposited on soft contact lenses. J Biomed Mater Res 1977; 11(4): 525-35.
  20. Bohnert JL, Horbett TA, Ratner BA, Royce FH. Adsorption of proteins from artificial tear solutions to contact lens materials. Invest Ophthalmol Vis Sci 1988; 29(3): 362-73.
  21. Castillo EJ, Koenig JL, Anderson JM, Lo J. Protein adsorption on hydrogels: II. Reversible and irreversible interactions between lysozyme and soft contact lens surfaces. Biomaterials 1985; 6(5): 338-45.
  22. Garrett Q, Garrett RW, Milthorpe BK. Lysozyme sorption in hydrogel contact lenses. Invest Ophthalmol Vis Sci 1999; 40(5): 897-903.
  23. Sack RA, Jones B, Antignani A, Libow R, et al. Specificity and biological activity of the protein deposited on the hydrogel surface. Relationship of polymer structure to biofilm formation. Invest Ophthalmol Vis Sci 1987; 28(5): 842-9.
  24. Luensmann D, Jones L. Protein deposition on contact lenses: the past, the present, and the future. Cont Lens Anterior Eye 2012; 35(2): 53-64.
  25. Tonge S, Jones L, Goodall S, Tighe B. The ex vivo wettability of soft contact lenses. Curr Eye Res 2001; 23(1): 51-9.
  26. Holly FJ, Refojo MF. Wettability of hydrogels I. Poly (2‐hydroxyethyl methacrylate). J Biomed Mater Res A 1975; 9(3): 315-26.
  27. Stapleton F, Stretton S, Papas E, Skotnitsky C, et al. Silicone hydrogel contact lenses and the ocular surface. Ocul Surf 2006; 4(1): 24-43.
  28. Jacob JT. Biocompatibility in the development of silicone-hydrogel lenses. Eye Contact Lens 2013; 39(1): 13-9.
  29. López‐Alemany A, Compañ V, Refojo MF. Porous structure of Purevision™ versus Focus® Night&Day™ and conventional hydrogel contact lenses. J Biomed Mater Res 2002; 63(3): 319-25.
  30. Efron N, Morgan PB, Cameron ID, Brennan NA, et al. Oxygen permeability and water content of silicone hydrogel contact lens materials. Optom Vis Sci 2007; 84(4): 328-37.
  31. Guillon M. Are silicone hydrogel contact lenses more comfortable than hydrogel contact lenses? Eye Contact Lens 2013; 39(1): 86-92.
  32. Shiobara M, Schnider CM, Back A, Holden BA. Guide to the clinical assessment of on-eye wettability of rigid gas permeable lenses. Optom Vis Sci 1989; 66(4): 202-6.
  33. Keir N, Jones L. Wettability and silicone hydrogel lenses: a review. Eye Contact Lens 2013; 39(1): 100-8.
  34. Maldonado‐Codina C, Morgan PB. In vitro water wettability of silicone hydrogel contact lenses determined using the sessile drop and captive bubble techniques. J Biomed Mater Res A 2007; 83(2): 496-502.
  35. Krishnan A, Liu YH, Cha P, Woodward R, et al. An evaluation of methods for contact angle measurement. Colloids Surf B Biointerfaces 2005; 43(2): 95-8.
  36. Menzies KL, Rogers R, Jones L. In vitro contact angle analysis and physical properties of blister pack solutions of daily disposable contact lenses. Eye Contact Lens 2010; 36(1): 10-8.
  37. Fatt I. Prentice Medal Lecture: Contact Lens Wettability-Myths, Mysteries, and Realities. Am J Optom Physiol Opt 1984; 61(7): 419-30.
  38. Tress M, Karpitschka S, Papadopoulos P, Snoeijer JH, et al. Shape of a sessile drop on a flat surface covered with a liquid film. Soft Matter 2017; 13(20): 3760-3767.
  39. Menzies KL, Jones L. The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci 2010; 87(6): 387-99.
  40. Schroder ME. Work of Adhesion of a Sessile Drop to a Clean Surface. J Colloid Interface Sci 1999; 213(2): 602-605.
  41. Campbell D, Carnell SM, Eden RJ. Applicability of contact angle techniques used in the analysis of contact lenses, part 1: comparative methodologies. Eye Contact Lens 2013; 39(3): 254-62.
  42. Grundke K, Pöschel K, Synytska A, Frenzel R, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications. Adv Colloid Interface Sci 2015; 222: 350-76.
  43. Guillon M, Maissa C, Wong S3, Patel T, et al. Effect of lens care system on silicone hydrogel contact lens wettability. Cont Lens Anterior Eye 2015; 38(6): 435-41.
  44. Gorbet M, Postnikoff C. The impact of silicone hydrogel-solution combinations on corneal epithelial cells. Eye Contact Lens 2013; 39(1): 42-7.
  45. Burlatsky SF, Atrazhev VV, Dmitriev DV, Sultanov V, et al. Surface tension model for surfactant solutions at the critical micelle concentration. J Colloid Interface Sci 2013; 393: 151-60.
  46. Starov VM. Surfactant solutions and porous substrates: spreading and imbibition. Adv Colloid Interface Sci 2004; 111(1-2): 3-27.
  47. Zhao Z, Carnt NA, Aliwarga Y, Wei X, et al. Care regimen and lens material influence on silicone hydrogel contact lens deposition. Optom Vis Sci 2009; 86(3): 251-9.
  48. Lin MC, Svitova TF. Contact lenses wettability in vitro: effect of surface-active ingredients. Optom Vis Sci 2010; 87(6): 440.
  49. Jones L, Powell CH. Uptake and release phenomena in contact lens care by silicone hydrogel lenses. Eye Contact Lens 2013; 39(1): 29-36.
  50. Guillon JP. Non-invasive tearscope plus routine for contact lens fitting. Cont Lens Anterior Eye 1998; 21: S31-40.
  51. Yokoi N, Takehisa Y, Kinoshita S. Correlation of tear lipid layer interference patterns with the diagnosis and severity of dry eye. Am J Ophthalmol. 1996; 122(6): 818-24.
  52. Madden RK, Paugh JR, Wang C. Comparative study of two non-invasive tear film stability techniques. Curr Eye Res 1994; 13(4): 263-9.
  53. Stahl U, Willcox MD, Naduvilath T, Stapleton F. Influence of tear film and contact lens osmolality on ocular comfort in contact lens wear. Optom Vis Sci. 2009; 86(7): 857-67.
  54. Cheng L, Muller SJ, Radke CJ. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components. Curr Eye Res 2004; 28(2): 93-108.
  55. Young G, Efron N. Characteristics of the pre‐lens tear film during hydrogel contact lens wear. Ophthalmic Physiol Opt 1991; 11(1): 53-8.
  56. Wang, J., et al., Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography. Invest Ophthalmol Vis Sci 2003; 44(6): 2524-8.
  57. Lorentz H, Rogers R, Jones L. The impact of lipid on contact angle wettability. Optom Vis Sci 2007; 84(10): 946-53.
  58. Guillon M, Styles E, Guillon JP, MaÏssa C, et al. Preocular tear film characteristics of nonwearers and soft contact lens wearers. Optom Vis Sci 1997; 74(5): 273-9.
  59. Shirafkan A, Woodward EG, Port MJ, Hull CC. Surface wettability and hydrophilicity of soft contact lens materials, before and after wear. Ophthalmic Physiol Opt 1995; 15(5): 529-32.
  60. MacMillan TF, Benjamin WJ. Cleaning and storage of rigid contact lenses prior to dispensing. J Am Optom Assoc 1992; 63(5): 333-42.
  61. Lorentz H, Jones L. Lipid deposition on hydrogel contact lenses: how history can help us today. Optom Vis Sci 2007; 84(4): 286-95.
  62. Senchyna M, Jones L, Louie D, May C, et al. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr Eye Res 2004;  28(1): 25-36.
  63. Bohnert JL, Horbett TA, Ratner BD, Royce FH. Adsorption of proteins from artificial tear solutions to contact lens materials. Invest Ophthalmol Vis Sci 1988; 29(3): 362-73.
  64. Jones L, Senchyna M, Glasier MA, Schickler J, et al. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye Contact Lens 2003; 29(1 Suppl):S75-9; discussion S83-4, S192-4.
  65. Tighe BJ. A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility. Eye Contact Lens 2013; 39(1): 4-12.
  66. Jones L, Franklin V, Evans K, Sariri R, et al. Spoliation and Clinical Performance of Monthly vs. Three Monthly Group II Disposable Contact Lenses. Optom Vis Sci 1996; 73(1): 16-21.