آپتامرهای نوکلئیک اسیدی: ابزارهای نوین در تشخیص و درمان

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشدگروه ایمونولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

2 دانشیار گروه ایمونولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

3 دانشجوی دکتری تخصصی گروه بیوتکنولوژی، انستیتو پاستور ایران، تهران، ایران

چکیده

چکیده
آپتامرها توالی ­های کوتاه تک رشته ­ای اسید نوکلئیکی (DNA یا RNA) یا پپتیدی با ساختار سه بعدی ویژه­ای هستند که قادرند با اختصاصیت و تمایل بالایی به اهداف خود متصل شوند. اندازه کوچک، فرایند تولید سریع و ارزان، ایمنی ­زایی اندک و پایداری بالا، آن ها را به مولکول­ های جذابی در برخی زمینه­های پژوهشی به ویژه در طراحی مسیر­های تشخیصی و درمانی جدید تبدیل کرده است. در این مقاله مروری، فرآیند تولید آپتامر­های اسید نوکلئیکی، مزایا و معایب آن ها در مقایسه با آنتی­ بادی ­ها و پتانسیل­ های کاربردیشان در پزشکی بحث می ­شود. همچنین محدودیت های آپتامرها و راه­کارهای غلبه بر آن نیز مورد بررسی قرار می­ گیرد.

کلیدواژه‌ها

موضوعات


  1. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequencesrenders cell resistant to human immunodeficiency virus replication. Cell 1990; 63(3): 601-8.
  2. Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors 2012; 12(1): 612-31.
  3. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequencesrenders cell resistant to human immunodeficiency virus replication. Cell 1990; 63(3): 601-8.
  4. Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors 2012; 12(1): 612-31.
  5. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. nature 1990; 346(6287): 818.
  6. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249(4968): 505-10.
  7. Bunka DH, Stockley PG. Aptamers come of age–at last. Nature Reviews Microbiology 2006; 4(8): 588-96.
  8. Song S, Wang L, Li J, Fan C, Zhao J. Aptamer-based biosensors. TrAC Trends in Analytical Chemistry 2008; 27(2): 108-17.
  9. Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science 1994; 263(5152): 1425-9.
  10. Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science 2000; 287(5454): 820-5.
  11. Dollins CM, Nair S, Sullenger BA. Aptamers in immunotherapy. Human gene therapy 2008; 19(5): 443-50.
  12. O'Malley RP, Mariano TM, Siekierka J, Mathews MB. A mechanism for the control of protein synthesis by adenovirus VA RNAI. Cell 1986; 44(3): 391-400.
  13. Burgert HG, Ruzsics Z, Obermeier S, Hilgendorf A, Windheim M, Elsing A. Subversion of host defense mechanisms by adenoviruses.  Viral Proteins Counteracting Host Defenses. Current Topics in Microbiology and Immunology, vol 269: Springer; 2002: 273-318.
  14. Han K, Liang Z, Zhou N. Design strategies for aptamer-based biosensors. Sensors 2010; 10(5): 4541-57.
  15. Marshall KA, Ellington AD. In vitro selection of RNA aptamers. Methods in enzymology 2000; 318: 193-214.
  16. Harada K, Frankel AD. Identification of two novel arginine binding DNAs. The EMBO journal 1995; 14(23): 5798.
  17. Syed MA, Pervaiz S. Advances in aptamers. Oligonucleotides 2010; 20(5): 215-24.
  18. Cirino PC, Mayer KM, Umeno D. Generating mutant libraries using error-prone PCR. Directed Evolution Library Creation: Methods and Protocols 2003: 3-9.
  19. Bittker JA, Phillips KJ, Liu DR. Recent advances in the in vitro evolution of nucleic acids. Current opinion in chemical biology 2002; 6(3): 367-74.
  20. Higuchi RG, Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Research 1989; 17(14): 5865.
  21. Gyllensten UB, Erlich HA. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proceedings of the National Academy of Sciences 1988; 85(20): 7652-6.
  22. Paul A, Avci-Adali M, Ziemer G, Wendel HP. Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX. Oligonucleotides 2009; 19(3): 243-54.
  23. Ozer A, Pagano JM, Lis JT. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Molecular Therapy—Nucleic Acids  2014; 3(8): e183.
  24. Gopinath SCB. Methods developed for SELEX. Analytical and bioanalytical chemistry 2007; 387(1): 171-82.
  25. Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosensors and Bioelectronics 2005; 20(12): 2424-34.
  26. Berezovski MV, Musheev MU, Drabovich AP, Jitkova JV, et al. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nature protocols 2006; 1(3): 1359-69.
  27. Berezovski M, Drabovich A, Krylova SM, Musheev M, et al. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. Journal of the American Chemical Society 2005;127(9):3165-71.
  28. Ganji A, Varasteh A, Sankian M. Aptamers: new arrows to target dendritic cells. Journal of drug targeting 2016; 24(1): 1-12.
  29. Guo K-T, Ziemer G, Paul A, Wendel HP. CELL-SELEX: Novel perspectives of aptamer-based therapeutics. International journal of molecular sciences 2008; 9(4): 668-78.
  30. Moghadam M, Sankian M, Abnous K, Varasteh A, et al. Cell-SELEX-based selection and characterization of a G-quadruplex DNA aptamer against mouse dendritic cells. International immunopharmacology 2016; 36: 324-32.
  31. Song K-M, Cho M, Jo H, Min K, Jeon SH, Kim T, et al. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Analytical biochemistry 2011; 415(2): 175-81.
  32. Vianini E, Palumbo M, Gatto B. In vitro selection of DNA aptamers that bind L-tyrosinamide. Bioorganic & medicinal chemistry 2001; 9(10): 2543-8.
  33. Lévesque D, Beaudoin J-D, Roy S, Perreault J-P. In vitro selection and characterization of RNA aptamers binding thyroxine hormone. Biochemical Journal 2007; 403(1): 129-38.
  34. Latulippe DR, Szeto K, Ozer A, Duarte FM, et al. Multiplexed microcolumn-based process for efficient selection of RNA aptamers. Analytical chemistry 2013; 85(6): 3417-24.
  35. Kong HY, Byun J. Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther (Seoul) 2013; 21(6): 423-34.
  36. Trausch JJ, Shank-Retzlaff M, Verch T. Replacing antibodies with modified DNA aptamers in vaccine potency assays. Vaccine. 2017;4; 35(41): 5495-5502.
  37. Freitas Jr RA, Nanomedicine VI. Biocompatibility, Landes Bioscience, Georgetown, TX (2003). See at: http://www. nanomedicine. com/NMIIA. htm.
  38. Serrato JA, Hernández V, Estrada‐Mondaca S, Palomares LA, et al. Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum‐supplemented, serum‐free or chemically defined media. Biotechnology and applied biochemistry 2007; 47(2): 113-24.
  39. Cabrera G, Cremata JA, Valdés R, García R, et al. Influence of culture conditions on the N‐glycosylation of a monoclonal antibody specific for recombinant hepatitis B surface antigen. Biotechnology and applied biochemistry 2005; 41(1): 67-76.
  40. Hong P, Li W, Li J. Applications of aptasensors in clinical diagnostics. Sensors 2012; 12(2): 1181-93.
  41. Bruno JG, Kiel JL. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosensors and Bioelectronics. 1999; 14(5): 457-64.
  42. Zhu Q, Liu G, Kai M. DNA aptamers in the diagnosis and treatment of human diseases. Molecules 2015; 20(12): 20979-97.
  43. Wiegand TW, Williams PB, Dreskin SC, Jouvin MH, et al. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. The Journal of Immunology 1996; 157(1): 221-30.
  44. Lee SW, Sullenger BA. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nature biotechnology. 1997; 15(1): 41-5.
  45. Hwang B, Lee S-W. Improvement of RNA aptamer activity against myasthenic autoantibodies by extended sequence selection. Biochemical and biophysical research communications 2002; 290(2): 656-62.
  46. Doudna JA, Cech TR, Sullenger BA. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proceedings of the National Academy of Sciences 1995; 92(6): 2355-9.
  47. Lee S-W, Sullenger BA. Isolation of a nuclease-resistant decoy RNA that selectively blocks autoantibody binding to insulin receptors on human lymphocytes. Journal of Experimental Medicine 1996; 184(2): 315-24.
  48. Lin L, Wang H, Liu Y, Yan H, Lindsay S. Recognition imaging with a DNA aptamer. Biophysical journal 2006; 90(11): 4236-8.
  49. Ikeda H, Old LJ, Schreiber RD. The roles of IFNγ in protection against tumor development and cancer immunoediting. Cytokine & growth factor reviews 2002; 13(2): 95-109.
  50. Kubik MF, Bell C, Fitzwater T, Watson SR, Tasset DM. Isolation and characterization of 2'-fluoro-, 2'-amino-, and 2'-fluoro-/amino-modified RNA ligands to human IFN-gamma that inhibit receptor binding. The Journal of Immunology 1997; 159(1): 259-67.
  51. Rhodes A, Deakin A, Spaull J, Coomber B, et al. The generation and characterization of antagonist RNA aptamers to human oncostatin M. Journal of Biological Chemistry 2000; 275(37): 28555-61.
  52. Kang J, Lee MS, Copland III JA, Luxon BA, et al. Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-β1 protein. Bioorganic & medicinal chemistry letters 2008;18(6):1835-9.
  53. McCauley TG, Kurz JC, Merlino PG, Lewis SD, et al. Pharmacologic and pharmacokinetic assessment of anti-TGFβ2 aptamers in rabbit plasma and aqueous humor. Pharmaceutical research 2006; 23(2): 303-11.
  54. Wang R, Zhu G, Mei L, Xie Y, et al. Automated modular synthesis of aptamer–drug conjugates for targeted drug delivery. Journal of the American Chemical Society  2014; 136(7): 2731.
  55. Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SAM, et al. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. European Journal of Pharmaceutical Sciences 2013; 50(2): 191-7.
  56. Shigdar S, Ward AC, De A, Yang CJ, et al. Clinical applications of aptamers and nucleic acid therapeutics in haematological malignancies. British journal of haematology 2011; 155(1): 3-13.
  57. Thiel KW, Giangrande PH. Intracellular delivery of RNA-based therapeutics using aptamers. Therapeutic delivery 2010; 1(6): 849-61.
  58. Cerchia L, Esposito CL, Camorani S, Catuogno S, Franciscis VD. Coupling aptamers to short interfering RNAs as therapeutics. Pharmaceuticals 2011; 4(11): 1434-49.
  59. Xiang D, Shigdar S, Qiao G, Zhou S-F, et al. Aptamer-mediated cancer gene therapy. Current gene therapy 2015; 15(2): 109-19.
  60. Healy JM, Lewis SD, Kurz M, Boomer RM, et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharmaceutical research 2004; 21(12): 2234-46.
  61. higdar S, Macdonald J, O'Connor M, Wang T, et al. Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors 2013; 13(10): 13624-37.
  62. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nature reviews Drug discovery 2010; 9(7): 537.
  63. Ferrara N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nature medicine 2010; 16(10): 1107-11.
  64. Vinores SA. Pegaptanib in the treatment of wet, age-related macular degeneration. International journal of nanomedicine 2006; 1(3): 263.
  65. Cordier G, Samarut C, Brochier J, Revillard J. Antibody‐Dependent Cell Cytotoxicity (ADCC). Scandinavian journal of immunology 1976; 5(3): 233-42.
  66. Rother K, Till GO, editors. The complement system. Springer Science & Business Media; 2012 Dec 6.
  67. Soleimanpour S, Farsiani H, Mosavat A, Ghazvini K, et al. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Applied microbiology and biotechnology 2015; 99(24): 10467-80.
  68. Famulok M, Mayer G, Blind M. Nucleic acid aptamers from selection in vitro to applications in vivo. Accounts of Chemical research 2000; 33(9): 591-9.
  69. Ulrich H, Martins AHB, Pesquero JB. RNA and DNA aptamers in cytomics analysis. Cytometry Part A 2004; 59(2): 220-31.
  70. Kanwar JR, Roy K, Kanwar RK. Chimeric aptamers in cancer cell-targeted drug delivery. Critical reviews in biochemistry and molecular biology 2011; 46(6): 459-77.
  71. Heidenreich O, Eckstein F. Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. Journal of Biological Chemistry 1992; 267(3): 1904-9.
  72. Eckstein F, Gish G. Phosphorothioates in molecular biology. Trends in biochemical sciences 1989; 14(3): 97-100.
  73. Klußmann S, Nolte A, Bald R, Erdmann VA, Fürste JP. Mirror-image RNA that binds D-adenosine. Nature biotechnology 1996; 14(9): 1112-5.
  74. Williams KP, Liu X-H, Schumacher TN, Lin HY, et al. Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proceedings of the National Academy of Sciences 1997; 94(21): 11285-90.
  75. Leva S, Lichte A, Burmeister J, Muhn P, et al. GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. Chemistry & biology 2002; 9(3): 351-9.
  76. Vater A, Jarosch F, Buchner K, Klussmann S. Short bioactive Spiegelmers to migraine‐associated calcitonin gene‐related peptide rapidly identified by a novel approach: Tailored‐SELEX. Nucleic acids research 2003; 31(21): e130-e.
  77. Obika S, Nanbu D, Hari Y, Morio K-i, et al. Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C 3,-endo sugar puckering. Tetrahedron Letters 1997; 38(50): 8735-8.
  78. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, et al. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998; 54(14):3 607-30.
  79. Kuwahara M, Obika S. In vitro selection of BNA (LNA) aptamers. Artificial DNA: PNA & XNA 2013; 4(2): 39-48.
  80. Nielsen PE, Berg RH. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991; 254(5037): 1497.
  81. Nielsen PE. Peptide nucleic acids: protocols and applications: Garland Science; 2004.
  82. Ray A, Nordén B. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. The FASEB Journal 2000; 14(9): 1041-60.
  83. Pinheiro VB, Taylor AI, Cozens C, Abramov M, et al. Synthetic genetic polymers capable of heredity and evolution. Science 2012; 336(6079): 341-4.
  84. Kasahara Y, Irisawa Y, Ozaki H, Obika S, et al. 2′, 4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O, 4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorganic & medicinal chemistry letters 2013; 23(5): 1288-92.
  85. Brudno Y, Birnbaum ME, Kleiner RE, Liu DR. An in vitro translation, selection and amplification system for peptide nucleic acids. Nature chemical biology 2010; 6(2): 148-55.
  86. Rosenbaum DM, Liu DR. Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. Journal of the American Chemical Society 2003; 125(46): 13924-5.
  87. Eulberg D, Klussmann S. Spiegelmers: biostable aptamers. Chembiochem 2003; 4(10): 979-83.
  88. Borgia JA, Fields GB. Chemical synthesis of proteins. Trends in biotechnology 2000; 18(6): 243-51.
  89. Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung L. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 1993; 81(12): 3271-6.
  90. Tucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW: Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. I Chromatogr B Biomed Sci Appl. 1999; 732: 203-12.