تاثیر وزوز گوش بر پردازش گفتار: شواهد و نظریات

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناس ارشد شنوایی شناسی،‎ ‎مرکز تحقیقات سلامت بارداری، دانشگاه علوم پزشکی‎ ‎زاهدان، زاهدان، ‏‎ ‎ایران

2 استادیار گروه شنوایی شناسی،‎ ‎دانشکده توانبخشی، دانشگاه علوم پزشکی‎ ‎زاهدان، زاهدان، ایران

3 دانشجوی دکترای تخصصی شنوایی شناسی، دانشگاه علوم بهزیستی و‎ ‎توانبخشی تهران، تهران، ایران

4 کارشناس ارشد شنوایی شناسی،‎ ‎دانشکده توانبخشی، دانشگاه علوم پزشکی‎ ‎زاهدان، زاهدان، ایران

چکیده

هدف: 
هدف از این مطالعه مروری، بررسی ارتباط وزوز و پردازش گفتار و همچنین بررسی مسیرهای درگیر احتمالی در این اختلال است. برای پردازش گفتار تمامی مسیر سیستم شنوایی از محیط تا مرکز و سیستم های شناختی و توجهی نقش دارند. آسیب این مسیر ممکن است باعث وزوز شود و با توجه به همپوشانی مسیر درگیر در تولید وزوز و مسیر درک و پردازش گفتار، به نظر می رسد وزوز گوش با تاثیر بر مسیرهای محیطی و مرکزی شنوایی موجب شود تا پردازش گفتار دچار اختلالات یا تغییراتی شود و یا وجود وزوز با اثر بر سیستم های توجهی و شناختی باعث اختلال در درک گفتار شود. این مقاله شواهد رفتاری و الکتروفیزیولوژی هر دو مسیر بالانورد و پایین نورد را مرور می کند.
روش بررسی:
در این مطالعه مروری با استفاده از کلیدواژه های وزوز و گسیل های صوتی گوش(Otoacoustic Emissions; OAE)، وزوز و پاسخ شنوایی ساقه مغز (Auditory Brainstem Response; ABR)، وزوز و پاسخ میان رس شنوایی (Middle Latency Response; MLR)، وزوز و امواج P300، وزوز و موج منفی ناهمخوان (Mismatch Negativity ;MMN)، وزوز و حافظه شنوایی کلامی، وزوز و پردازش اطلاعات زمانی، وزوز و اختلال پردازش شنوایی مرکزی، وزوز و ارزیابی- های سایکوآکوستیک، وزوز و ارزیابی های رفتاری شنوایی در پایگاه های اطلاعاتی Google scholar و Science direct و Scopus جستجو صورت گرفت. مقالات مرتبط انتخاب، و پس از مطالعه دقیق 76 مقاله و6 کتاب و 1 پایان نامه، مقاله مروری استخراج گردید.
یافته ها:
در توضیح متاثر شدن درک گفتار در بیماران دچار وزوز، دو نظریه را می توان پیشنهاد کرد. یک نظریه از آسیب در سطوح پایین و ساقه مغز حمایت می کند (بالانورد) و نظریه دیگر کاهش درک گفتار را به درگیری سیستم های توجهی و شناختی نسبت می دهد (پایین نورد) که هر کدام شواهد حمایت کننده خود را دارا می باشند.
نتیجه گیری:
بر اساس شواهد آزمون های رفتاری و الکتروفیزیولوژی، درگیری هر دو مسیر پردازش گفتاری بالانورد و پایین نورد در افراد دچار وزوز تایید می شود.

کلیدواژه‌ها


  1. Jafarzade S, Firozi M, Ghazizade hashemi A. Tashkhis va tavanbakhshi jame dar shenavaee shenasi. mashhad: sokhangostar; 2012 776-777. [Persian]
  2. Goldstien B, Shulman A. central auditory speech test finding in individuals with subjective idiopathic tinnitus. international tinnitus journal 1999; 5(1). 9-16.
  3. Modh D, Katarkar A, Alam N, Jain A, Shah P. Relation of distortion product otoacoustic emission and tinnitus in normal hearing patients: a pilot study. Noise and Health 2014; 16(69): 69-70.
  4. Liu B, Liu C, Song B. Otoacoustic emissions and tinnitus. Zhonghua er bi yan hou ke za zhi. 1996; 31(4): 231-233.
  5. Mokrian H, Shaibanizadeh A, Farahani S, Jalaie S, et al. Evaluation of distortion and transient evoked otoacoustic emission in tinnitus patients with normal hearing. Iranian journal of otorhinolaryngology  2014; 26(74): 19-24.
  6. Sztuka A, Pospiech L, Gawron W, Dudek K. DPOAE in estimation of the function of the cochlea in tinnitus patients with normal hearing. Auris Nasus Larynx 2010; 37(1): 55-60.
  7. Granjeiro RC, Kehrle HM, Bezerra RL, Almeida VF, et al. Transient and distortion product evoked otoacoustic emissions in normal hearing patients with and without tinnitus. Otolaryngology-Head and Neck Surgery 2008; 138(4): 502-506.
  8. Ami M, Abdullah A, Awang MA, Liyab B, Saim L. Relation of distortion product otoacoustic emission with tinnitus. The Laryngoscope 2008; 118(4): 707-712.
  9. da Cruz Fernandes L, dos Santos TM. Tinnitus and normal hearing: a study on the transient otoacoustic emissions suppression. Brazilian journal of otorhinolaryngology 2009; 75(3): 409-414.
  10. Bartnik G, Hawley M, Rogowski M, Raj-Koziak D, et al. Distortion product otoacoustic emission levels and input/output-growth functions in normal-hearing individuals with tinnitus and/or hyperacusis. Otolaryngologia polska= The Polish otolaryngology 2009; 63(2): 171-181
  11. Shiomi Y, Tsuji J, Naito Y, Fujiki N, Yamamoto N. Characteristics of DPOAE audiogram in tinnitus patients. Hearing research 1997; 108(1): 83-88.
  12. Onishi ET, Fukuda Y, Suzuki FA. Distortion product otoacoustic emissions in tinnitus patients. International tinnitus journal 2004; 10(1): 6-13.
  13. Oxenham AJ, Bacon SP. Cochlear compression: perceptual measures and implications for normal and impaired hearing. Ear Hear 2003; 24(5): 352-366
  14. Ravirose U, Thanikaiarasu P, Prabhu P. Evaluation of Differential Sensitivity for Frequency, Intensity, and Duration around the Tinnitus Frequency in Adults with Tonal Tinnitus. The journal of international advanced otology 2019; 15(2): 253.
  15. Sahoo JP. The effect of tinnitus on some psychoacoustical abilities in individuals with normal hearing sensitivity. The international tinnitus journal. 2014 ;19(1): 28-35.
  16. Haas R, Smurzynski J, Fagelson MA. The effect of tinnitus on gap detection. Tinnitus Today. 2012; 37(2): 10-30.
  17. Moreira RR, Ferreira Junior M. Speech tests: application in individuals with noise induced hearing loss (in Portuguese). Pro Fono. 2004; 16(3): 293-300
  18. Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BC. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proceedings of the National Academy of Sciences 2006; 103(49): 18866-18869.
  19. Kaltenbach JA, Afman CE. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: A physiological model for tinnitus. Hear Res2000; 140(1-2): 165-172.
  20. Kaltenbach JA, Zhang J, Finlayson P. Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res 2005; 206(1-2): 200-226.
  21. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci 2004; 27: 676-682.
  22. Brozoski TJ, Bauer CA, Caspary DM. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci. 2002; 22: 2383-2290
  23. Seki S, Eggermont JJ. Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res2003; 180(1-2): 28-38.
  24. Bartels H, Staal MJ, Albers WJ. Tinnitus and neural plasticity of brain. Otol Neurotol. 2007; 28(2): 178-184.
  25. Mirz F, Gjedde A, Ishizu K, Pedersen CB. Cortical networks subserving the perception of tinnitus-a PET study. Acta Otolaryngol Suppl 2000; 120(543): 241-243.
  26. Lockwood AH, Salvi RJ, Coad ML, Towsley ML, et al. The functional neuroanatomy of tinnitus: Evidence for limbic system links and neural plasticity. Neurology 1998; 50(1): 114-120.
  27. Singh S, Munjal SK, Pandab NK. Comparison of auditory electrophysiological responses in normal- hearing patients with and without tinnitus. oto-rhinol-laryngol 2011; 125(7): 668-672
  28. Kehrle HM, Granjeiro RC, Sampaio ALL, Bezerra R, et al. Comparison of Auditory Brainstem Response Results in Normal-Hearing Patients with and Without Tinnitus. Arch Otolaryngol Head Neck Surg. 2008; 134(6): 647-651.
  29. Rosenhall U, Axelsson A. Auditory brainstem response latencies in patients with tinnitus. Scand Audiol. 1995; 24(2): 97-100
  30. Nemati S, Habibi AF, Panahi R, Pastadast M. Cochlear and brainstem audiologic findings in normal hearing tinnitus subjects in comparison with non-tinnitus control group. Acta Medica Iranica 2014; 52(11): 822-826.
  31. Maurizi M, Ottaviani F, Paludetti G, Almadori G, Tassoni A. Contribution to the differentiation of peripheral versus central tinnitus via auditory brain stem response evaluation. Audiology 1985; 24(3): 207-216
  32.  Ikner CL, Hassen AH. The effects of tinnitus on ABR latencies. Ear Hear 1990;11(1): 16-20.
  33. Liu XP, Chen L. Auditory brainstem response as a possible objective indicator for salicylate-induced tinnitus in rats. Brain research 2012; 1485(4): 88-94.
  34. Attias J, Pratt H, Reshef I, Bresloff I, et al. Detailed Analysis of Auditory Brainstem Responses in Patients with Noise-induced Tinnitus. Audiol 1996; 35(5): 259-270.
  35. Dehmal S, Eisinger D, Shore SE. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front. Syst. neurosci. 2012; 6(2):1-15.
  36. Gu JW, Herdmann BS, Levine RA, Melcher JR.Brainstem Auditory Evoked Potentials Suggest a Role for the Ventral Cochlear Nucleus in Tinnitus. Journal of the association in otolaryngology 2012; 13(6):819-833.
  37. Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 2011; 31(38): 13452-13457.
  38. Barnea G, Attias J, Gold S, Shahar A. Tinnitus with normal hearing sensitivity: extended high-frequency audiometry and auditory-nerve brain-stem-evoked responses Audiol 1990; 29(1): 36-45
  39. pickles J .an introduction to the physiology of hearing. Third edition. howard house: emerald group publishing limited 2008 :291-299.
  40. Blackburn CC, Sachs MB. The representations of the steady-state vowel/ε/in the discharge patterns of cat anteroventral cochlear nucleus neurons. Neurophysiol 1990;63(5): 1191-1212.
  41. Hienz R D, Aleszczyk C M, May B J. Vowel discrimination in cats: acquisition, effects of stimulus level, and performance in noise. Acoust. Soc. Am 1996;99(6): 3656-3668.
  42. Palmer A R, Winter I M, Darwin C J. The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primary like cochlear nucleus neurons.Acoust. Soc. Am 1986; 79(1): 100-113.
  43. Rhode WS, Recio A, Representation of vowel stimuli in the ventral cochlear nucleus of the chinchilla. Hearing rech. 2000; 146(1): 167-184.
  44. May BJ, Le Prell GS, Sachs MB, Vowel Representations in the Ventral Cochlear Nucleus of the Cat: Effects of Level, Background Noise, and Behavioral State. Neurophysiol. 1998; 79(4): 17-55.
  45. Johnson KL, Nicol T, Zecker SG, Bradlow AR, et al. Brainstem encoding of voiced consonant–vowel stop syllables. Clinical Neurophysiology 2008; 119(11): 2623-2635.
  46. Kim DO, Rhode WS, Greenberg SR. Responses of cochlear nucleus neurons to speech signals: neural encoding of pitch, intensity and other parameters. In Auditory Frequency Selectivity. 119. Boston: Springer; 1986. 281-288.
  47.  Filha VAVS, Samelli AG, Matas CG. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise. Med sci monit 2015; 21: 2701-2706.
  48. Rawool V. Temporal integration and processing in the auditory system in in Geffner D, Swain DR. Auditory processing disorder assessment, management and treatment. Santiago: plural publishing 2007:117-139.
  49. Pirasteh E, Esmailzadeh N, Absalan A, Nahrani MH, et al. Gaps-in-noise test performance in subjects with type 2 diabetes mellitus. Auditory and Vestibular Research 2018; 27(4): 200-207.
  50. Sanches SGG, Sanchez TG, Carvallo RMM. Influence of cochlear function on auditory temporal resolution in tinnitus patients. Audiol Neurootol 2010; 15: 273-281.
  51. Mehdizade gilani V, ruzbahani M, Mehdi P, Amali A, et al. Temporal processing evaluation in tinnitus patient: result on analysis of gap in noise and duration pattern test. Iranian journal of otorhinolaryngology 2013; 25 (4): 221-225.
  52. Sahoo JP. The effect of tinnitus on some psychoacoustical abilities in individuals with normal hearing sensitivity. The international tinnitus journal 2014; 19(1): 28-35.
  53. Fournier P, Hébert S. Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap?. Hearing Research 2013; 295: 16-23.
  54. Gilles A, Schlee W, Rabau S, Wouters K, et al. Decreased speech-in-noise understanding in young adults with tinnitus. Frontiers in neuroscience 2016; 10: 288.
  55. Buzo BC, Lopes JD. Speech recognition in noise in individuals with normal hearing and tinnitus. Audiology-Communication Research 2017; 22.
  56. Tai Y, Husain FT. The Role of Cognitive Control in Tinnitus and Its Relation to Speech-in-Noise Performance. Journal of audiology & otology 2019; 23(1): 1-7.
  57.  Morse K, Vander Werff K. Comparison of Silent Gap in Noise Cortical Auditory Evoked Potentials in Matched Tinnitus and No-Tinnitus Control Subjects. American journal of audiology 2019; 28(2): 260-273.
  58. Ku Y, woo Ahn J, Kwon C, Suh MW, et al. The gap-prepulse inhibition deficit of the cortical N1-P2 complex in patients with tinnitus: The effect of gap duration. Hearing research 2017; 348: 120-128.
  59.  Lee CY, Jaw FS, Pan SL, Lin MY, Young YH. Auditory cortical evoked potentials in tinnitus patients with normal audiological presentation. Journal of the Formosan Medical Association 2007; 106(12): 979-85.
  60. dos Santos Filha VA, Matas CG. Late Auditory evoked potentials in individuals with tinnitus. Brazilian journal of otorhinolaryngology 2010; 76(2): 263-270.
  61. Mahmoudian S. Effects of residual inhibition phenomenon on early auditory evoked potentials and topographical maps of the mismatch negativity obtained with the multi-feature paradigm in tinnitus (Doctoral dissertation) Hannover of Germany: Univ. Hannover medical 2015.
  62. Mahmodian S, Farhadi M, Najafi koopaie M, Darestani Farahani E, et al. Central auditory processing duration chronic tinnitus as indexed by to topographical maps of the mismatch negativity obtained with multi feature paradigm.brain research. Brain research 2013; 1527:161-173.
  63.  Holdefer L, Oliveira CA, Venosa AR. The mismatch negativity test in ears with and without tinnitus-a path to the objectification of tinnitus. International Tinnitus Journal 2013; 18(2): 168-174.
  64. El-Minawi MS, Dabbous AO, Hamdy MM, Sheta SM. Does changes in mismatch negativity after tinnitus retraining therapy using tinnitus pitch as deviant stimulus, reflect subjective improvement in tinnitus handicap? Hearing, Balance and Communication 2018; 16(3):182-196.
  65. Jemel B, Achenbach C, Müller BW, Röpcke B, Oades RD. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain topography 2002; 15(1): 13-27.
  66. Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R. Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 2000; 12(1): 9-14.
  67. Elmorsy SM, Abdeltawwab MM. Auditory P300: Selective Attention to 2 KHZ Tone-Bursts in Patients with Idiopathic Subjective Tinnitus. International Journal 2013; 1(1): 7-11.
  68. Zuraida Z.; Muhammad Nur Hilmi C. H.; Mohd Normani Z.; Nik Adilah N. O. Determination of the Neurocognitive Status Using Objective Measurement: p300 among Tinnitus Patients. International Medical Journal 2016; 23(4): 391-394.
  69. Attias J, Bleich A, Urbach D, Furman V. Clinical relevance of P300 in tinnitus and PTSD patients. Electroencephalography and Clinical Neurophysiology 1995; 3(95): 79.
  70. Hall JH. New handbook of auditory evoked responses. United states of amrica: pearson education؛2007:518.
  71. Oknina LB, Kuznetsova OA, Enikolopova EV. Temporal characteristics of triggering dipole sources of the auditory P300 in tasks varying in complexity. Human physiology 2009; 35(5): 523.
  72. Roberts LE, Husain FT, Eggermont JJ. Role of attention in the generation and modulation of tinnitus. Neuroscience & Biobehavioral Reviews. 2013; 37(8): 1754-1773.
  73. Cuny C, Norena A, Massioui F, Chery C. Reduce attention shift in response to auditory change in subject with tinnitus. Audiol neurootol 2004; 9(5): 294-302.
  74. Schroger E.A. neural mechanism for involuntary attention shift to change in auditory stimulation. cognition nat-neurosci. 1996; 8(6): 527-539.
  75. Rossiter S, Stevens C, Walker G. Tinnitus and its effect on working memory and attention. Journal of speech, language, and hearing research 2006; 49(2): 150-160.
  76. Langner G. Neural processing and representation of periodicity pitch. Acta Oto-Laryngologica 1997; 117(sup532): 68-76.
  77. Langner G, Sams M, Heil P, Schulze H. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoence- phalography. Journal of comparative Physiology A 1997; 181(6): 665-676.
  78. Langner G, Schreiner CE. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol.1988; 60(6): 1799-1822.
  79. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neuroscience research 1990; 8(4): 221-254.
  80. Boyen K, Başkent D, van Dijk P. The gap detection test: can it be used to diagnose tinnitus?. Ear and hearing 2015; 36(4): 138.
  81. Acrani IO, Pereira LD. Temporal resolution and selective attention of individuals with tinnitus. Pró-Fono Revista de Atualização Científica 2010; 22(3): 233-238.
  82. Sarter M, Parikh V, Howe WM. Phasic acetylcholine release and the volume transmission hypothesis. time to move on. Nature Reviews Neuroscience 2009; 10(5): 383-390.
  83. Douglos R, Markram H, Martin K. Neocortex in shepard GM. The synaptic organization of the brain. New York: Oxford University Press; 1990:700-736.